DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

JuLy 1976

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A03Y4 856

\

= s it -

mOT L AN ATION OF THIS Pase When ‘dlﬂ‘f‘nh'.'g'

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2, GOVT ACCESSION NO.

AFOSR - TR- 77= 0015

3. RECIPIENT » CATALOG NUMBER

TITLE (and Subrittie)

DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

5. TYPE OF REPORT &4 PERIOD COVEREO

Interim

6. PERFORMING ORG. REPORT NUMBER

. AUTHOR(s)

Philip Howard Mason

8. CONTRACT OR GRANT NUMBER(a)

F44620-73-C-0074

PERFORMING ORGANIZATION NAME AND ADORESS
Carnegie-Mellon Uniersity

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Rolling AFB, DC 20332

Computer Science Dept. 61101D
pittsburgh, PA 15213 AO 2466

11. CONTROLLING OFFICE NA%E ANO ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency Inlv 1976
1400 Wilson Blvd Ty YR
Arlington, VA 22209 203

T WONTTORING AGENCY NAME 8 ADDRESS(I7 different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research (NM)| UNCLASSIFIED

155, DECLASSIFICATION/ DOWNGRADING
SCHEOQULE

DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If dilferent from Report)

. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identily by biock number)

20

ABSTRACT (Continue on reverse aide If necessary and identily by biock number)

An approach to designing programs for implementation in a multiple instruction stream-
multiple data stream processing environment is presented. A program is modeled as a
directed graph consisting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the model is represented by massage tokens. Eaclk
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabilisti

FORM
DD 1 JAN 73

EDITION OF 1 NOV 6315 OBSOLETE

1473

UNMCLASSIEIED

y SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

—————

i kb

e, YL ¥

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

v K e 2

choice functions. A system, called STEPPS, has been buill in wiite & THEEEE =2 ==
described and evalustion tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

_ The design approach is to describe a multiprocessing program in terms of the modeling

system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the mode! is well formed, (b) whether
the model contains deadlocks, (c) predictions of steady state properties of each
process. In addition, without much difficulty, analysis functions external to STEPPS
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difticult to determine without resorting
to simulstion. Therefore the STEPPS system includes a mode! simulator with data
collection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
inclusion of data collection facilities not originatly provided by STEPPS.

As a system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance sttributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about t.e real
system parameters, the mode! can be tuned to more closely predict ultimate system

performance.

Geveral examples of communicating processes are modeled using STEPPS including
pipeline processes, probabilistic processes, P/V synchronization, and reader /writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, thu implications of restricting the numbers
of available processors and using different scheduling slgorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, wiien a multiprocess program under development is
sufficiently instrumented, the STEPPS madel and system can be used to help tune the

program's structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, sv:h &s queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as & new spproach to designing multiprocessing programs,

—

(@) UNCLASSTFIED

SEC L HITY CLASSIFICATION OF Yi'c PAGE(Whe n Frtered)

e o

DT e,

M T R S —— ru——

Design Tools for Evaluating

Multiorocessor Programs

8 Philip Howard Mason

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213
July, 1976

Submitted to Carregie-Mellon University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

g
|

L]

This research was supported by the Defense Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C0074) and is monitored by the Air

Force Office of Scientific Research. ' ce)
|

{
it

B
a

g3 | =9

MCES!

|

!

\

i

:

Abstract ‘
|

An approach to designing programs for implemantation In a multiple instruction stream-
multiple data stream processing envirsnment is presented. A program is modeled as a
directed griph corsicting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the mode! is represented by messags tokens. Each
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabllistic
choice furictions. A system, called STEPPS, has been built in which a model can be
described and evaluaticn tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

. The design approach is to describe a multiprocessing program in terms of the modeling
system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the model is well formed, (b) whather
the model contains deadlocks, (c) predictions of steady state prcperties of each
process. In addition, without much difficulty, analysis functions external to STEPFC
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difficult to determine without resorting
to simulation. Therefore the STEPPS system includss a model simulator with data
cdllection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
Inclusion of data collection facilities not originally provided by STEPPS.

As 2 system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance attributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about the resl
system parameters, the model can be tuned to more closely predict ultimate system
performance.

Several examples of communicating processes are modeled using STEPPS including
pipeiine processes, probabilistic processes, P/V synchrorization, and reader/writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, the implications of restricting the numbers
of availabie processors and using different scheduling algorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, when a multiprocess program under development Is
sufficiently Instrumented, the STEPPS model and system can be used to help tune the
program’s structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, such as queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as a new approach to designing multiprocessing programs,

ACKNOWLEDGEMENT

I sincerely thank my thesis committee who with their advice, guidance, and criticism of
this thesis helped me tu maintain their high star dards: Bill Wulf (chairman), Sam Fuller,
Charles Kriebel, Victor Lesser, and Mary Shaw. 1 am grateful for having been
associated with the Carnegie-Mellon Computer Science Department end | must
acknowledge the initial, and continuing, inspiration gleaned from Alan J. Perlis, my first
computer science teacher, former Carnegie-Mellon department head and supervisor. In
addition, | am grateful for the interest, support, and assistance from my friends,
colleagues, family, and especially my parents.

Most of all, | thank my wife, Lee, for suffering through all the lonely nights (and days),
for helping me to rewrite many pages, for learning to use the computer to type this
thesis, for keeping me going, and for her understanding.

TABLE OF CONTENTS iv

TABLE OF CONTENTS

CHAPTER PAGE
| Problem Statement, History and Goals
LA Introductiono e I-1
1.8 Diractionof thiswork I-5
1C Other work bearing on the problem 1-8
1D The STEPPS System I-15
LE The STEPPS system and simulator 1-24
LF Thesis contributions and oulline of remainder
ofthesis 1-29
11 The STEPPS Model
ILA Modeling the behavior of a process I1-1
1.8 Data flow and links 11-3
I.C Notation and definitions 11-6
I.D STEPPS system capabilities I1-11
11 The Use of the STEPPS Approach to Program Design
LA Use of the STEPPSmodel 11-1
111.8 Using STEPPS during system design: A
Bliss/11 compiler 11-12
£ l.C Using STEPPS during system construction and
tuning: Hearsay I1.. 111-28
b Iv Analysis of a STEPPS Model
IV.A Markcv and semi-Markov processes V-1
IV.B Well-formed STEPPS models Iv-6
$ IvC Deadlock structures and situations Iv-8

Iv.D Reducing a STEPPSmodel Iv-13

TABLE OF CONTENTS v

IV.E The recognition of deadlocks Iv-29
v The STEPPS Simutator and STEPPS Interactive System

V.A Simulation objectiveso oo e e V-1

v.B Simulation operation and data collected V-3

v.C The implementatiion of the STEPPS system v-10
12 Summary

VLA Designing programs for multiprocessor

computers o . e e e e e Vi-2

viB Experiments and results VI-5

VviC Future research and refinements to STEPPS VI-9

ViD Corclusions . « v v v v v v e e e e e e e e e vi-12
A STEPPS System Manual

Al Introduction o e e e e e e e A-1

A2 Model creation oo e e e e e e e A-3

A3 Model analysis and system commands A-8

A4 Simulationcommands e o e e e A-8

A5 Keyword commands - ..o e e e A-9
B Using the STEPPS System

B.1 Bliss/11 example protocolo B-1

B.2 The STEPPS Hearsay limodel B-3
o Velidation of Simulation Results
Biblography . . « o o v e e e e e e e e i
INDBX . o o v e vii

-
T W T P

"P'

N T e

Figure [-1

Figure [-2
Figure [-3

Figure I-4

Figure -5
Figure [-6
Figure [-7
Figure [-8
Figure [-9
Figure 1-10
Figure I-11
Figure I-12
Figure II-1
Figure IlI-1
Figure III-2
Figure III-3
Figure I1I-4
Figure 111-5
Figure III-6
Figure III-7
Figure I1I-8

Figure 1I1-9

FIGURES

FICURE PAGCE

Possibie reiationships between two proceses, A
andB. I-5
Amarkedgraph. [-10
A finite state atomaton I-10

A Petri net that is neither a marked graph nor a
finite state atomaton. I-11
UCLAmodeinodes. I-13
Pipeline. v i . 1-17
Registrar’s data retrievai system. [-20
Process ALPHA I-21
Mapping between Petri nets and STEPPS modei 1-23
Mapping of UCLA modei to STEPPS. I-24
Incompatibleioop. 1-27
Incompatible non-locp 1-27
Process and iink graphicai notation. [1-8
Fork and joinprocesses -2
Subroutine process. -4
Concurrent processing subroutine cali I11-5
Poisson arrival process Il11-6
General service time process .- -7
Pipeline of processes -8
Lock/Uniock synchronization. I11-10
Reader /Writer synchronization. -11
Biiss/11 phase structure 1-13

FIGURES

Figure 1II-10
Figure I1I-11
Figure III-12
Figure I11-13
Figure I11-14
Figure III-15
Figure III-16
Figure 111-17
Figure 11I-18
Figure I11-19
Figure 111-20

Figure [1I-21

Figure [11-22

Figure 11I-23

Figure 111-24
Figure 111-25
Figure 111-26
Figure 111-27
Figure 11]-28
Figure 111-29
Figure I11-30
Figure 111-31
Figure 111-32

Figure I111-33

Bliss/11 measured data.
STEPPS Bliss/11 model commands
Bliss/11 graph model

Bliss/11 simulation FIFQ table.

Bliss/11 simulation LINK table

Bliss/11 simulation RANDOM table
Bliss/11 percentage maximum throughput

Graph of measured throughput

Bliss/11 simulation FIFQ queue lengths . .

Bliss/11 simulation LINK queue lengths . .

.......

Bliss/11 simulation RANDOM queue lengths

Table of results of multi-copy Bliss/11 phase

models

Multi-copy Bliss/11 phase modal Thru Rate grapk . . .

Multi-copy Bliss/11 phase model percentage Max

Thru Rate graph

LEX decompositionresults

Simplified HSII system organization . . .
Description of precondition process . . .

STEPPS precondition model

Knowledge Source process description . .

STEZPPS Knowledge Source model
PCSELECTOR process

Set of identical Knowledge Sources . . .

Hearsay Il locking structure matrix

Hearsay Il representative results

vli

1-17
1-17
11-18
I11-18
111-19
111-19
111-20
I1-21
111-22
111-23

111-23

111-24

111-25

111-26
111-27
111-32
111-33
I11-33
111-34
111-35
111-35
111-36
111-40

I11-42

Figure IV-1
Figure IV-2
Figure IV-3

Figure IV-4

-t

Figure IV-5
Figure IV-6
Figure IV-7
Figure IV-8
' Figure IV-9
Figure IV-10
Figure IV-11
Figure V-1

Fipure C-1

Markov processes v 0 o0 .. Iv-3

Improper initial condition. Iv-10
Loop with immediate-recurient states , . Iv-11
Incompatible sequence Iv-12
Linksplitpaths Iv-13
Process splitpaths Iv-13
Process combinations, Iv-18
Adjacent ports of aprocess. Iv-21
Ports attached to SOURCE/SINKS Iv-23
Combining processes that are in-parallel Iv-25
Anirreduciblegraph. Iv-29
Aringofprocesses. v v\ 0. v-2
Bliss/11 FIFO 6 processors evaluation data. c-2

I-1

Chapter [

Problem Statement, Hisiory and Goals

LA, Introduction

This research develops bothr a methodology for enhancing the design of
. programs to be composed of concurrently executable subparts and a set of tools to
support that methodology. The execution environment which we shall be concerned
with consists of several processing units operating under the control of separate
instruction streams. Intuitively, when parts of a program are processed in such an

i required to execule the program should decrease‘. For

environment, the real time
this reason, as \sell as others, much current research effort addresses program
structure for jus. such a multiprocessing environment. This thesis addresses the
problem of decomposing programs for concurrent execution in such a way that the
decompositions are efficient with respect to certain specifiable criteria. The approach
is to provide a set of tools with which a system designer can manipulate and analyze a
program mode! created to predict the performance of a system designed for a multiple
asynchronous instruction stream environment. The tools are applicable to both the
early design of a program and later tuning of a program under construction.

t"Real time" is the time elapsed between tha start of computation and the time the
final result is available. It is different from the total processing time since operations
may be performed concurreritly.

*This does not always occur. Graham [Graham 72] has shown that adding more
processors can increase real time due to scheduling anomalies.

LA Introduction 1-2

There are several reasons why many researchers are consldering
multiprocessing and problem restructuring In favor of mereiy building faster computer
hardware without explicit concurrency. First, certain probiems overwheim current and
projected technology when programmed for single Instruction stream computers. An
example is the problem of weather forecasting for any single place on the eerth. At
present, this problem can not be solved with enough lead time to make the forecsst
useful. Another large problem is fast-response scheduling, cost accounting, and
resource management for large corporatlons. In this problem the mathematical
computations are not necessarily as complex as those for weather forecasting, but the
amnunt of data processing required can be exiremely large end, as for weather
prediction, there is a time constraint on the answers. For each of these problems, a
solution might be attalnablz In a reasonable perlod oi time If some of the computations
could be distributed and executed in parallel. Among the unknown factors are how the
problems should be decomposed for distributed processing and what communication
constraints and processing attributes eliclt favorable computational attributes (such l;
real time speed and low cost).

There may also be economic incentlves to implement a program in a
multiprocessing environment. For example, it may be less expensive to implement a
speech understanding system on a set of minicomputers than on one fast and relatively
complex uniprocessing computer. The price benefits may occur because of

1. the use of so called off-the-chelf equipment making total processing
power cheaper than large uniprocessing machines, and

2. economies of scale in manufacturing.
Perhaps the most compelling reason (possibly a consequence of the flrst two)

for wanting to decompose programs for multiprocessing environments Is that such

LA Introduction 1-3

environments are now available and It is important to use then properly. C.mmp [Wulf
72b), BBN Pluribus IMP [Heart 73], tha Burroughs D825 [Anderson 62), UC Berkeley’s
Prime [Quatse 72), and UC Irvine’s DCS [Farber 75] all have some multiprocessing
capabilities. Additionally Clark’s macromddules [Clark 72], Bell’s reglister transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewlorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelines for decomposing a problem for
multiprocessing execution [Newell 75) A number of questions related tv the discovery
of such guidelines have been investigated. Thase include.

1. Can a problem be decomposed for solution in a multiprocessing

environment? [Karp 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65,
Ros~nfeld 69]

2. How can the algorithmic structure of a multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Will the same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattainable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In a
sequential program. [Karp 69, Keller 73a, 73b, Riddle 72)

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What measures are interesting about the ccmputation? Some may be:
speed, redundancy, (in)efficlency, resource utilization, and economles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there are scarce resources?
[Adam 72, Graham 72]

7. How can bottlenecks be identified and their effects lessened or ciiminated?
[Courtois 72, Dijkstra 74, Rice 73]

8. What are the effects of restructuring the communicatlons among the
cooperating processes? [Balzer 71, Horning 73]

9. What style of decomposition and machine structure would « st suit &
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

LA Introduction I-3

environments are now availabie and it is important to usa them properly. C.mmp [Wulf
72b], BBN Plurlbus IMP [Heart 73], the Burroughs D825 [Anderson 62], UC Berkeley’s
Prime [Quatse 72], and UC Irvine’'s DCS [Farber 75] all have some multiprocessing
capabllities. Additionally Clark’s macromodules [Clark 72]), Bell's register transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewiorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelinss for decomposing a problem for
multiprocessing execution [Neweil 751 A number of questions reiated to the discovery
of such guidelines have been investigated. These include:

1. Can a problem be decomposed for solution in a multiprocessiry

environment? [Karn 66, Gosden 66, Miranker 71, Dennls 71, Anderson 65,
Rosenfeid 69]

2. How can the aigorithmic structure of & multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73as, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Wil :he same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattasinable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In @
sequential program. [Karp 69, Keller 738, 73b, Riddle 72]

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What messures are interesting about the computation? Somo may be:
speed, redundancy, (in)efficiency, resource utilization, and ecoromles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there ere scarce resources?
[Adam 72, Graham 72] '

7. How can bottlenecks be identified and their effects lessened or eliminated?
[Courtois 72, Diikstra 74, Rice 73]

8. What are the effects of restructuring the communications among the
cooperating proce;ses? [Baizer 71, Horning 73]

9. What style of decomposition and machine structure would best suit a
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

B b e i cnne BECAR ey o ot e

LA Introduction I-4

The last question points out that there are several styles of multiprocessing.
Flynn [Flynn 66] described processing organization in four ways:

single instruction stream - single data stream(SISD),

single instruction stream - multiple data streams (SIMD),

multiple instruction streams - single data stream (MISD), and

multiple instruction streams - multiple data streams (MIMD).

These computing styles may he used to describe an entire computing
environment and a‘fect a problem’s decomposition and algorithms. However those
systems that do not allow a programmer to program explicitly for multiple streams of
data or instructions will be considered as singie stream machines. For example, any
multiprogramming machine performs some operations concurrently (e.g. 1/0), but a
programmer is usually unable to control this concurrency. In an array or associative
processor a control unit specifies which operation is performed simultaneously on
many data items simultaneously -- these are SIMD machines. The current pipeline
machines (CDC STAR-100, TI ASC) perform parts of single operations on several pieces
of data. The programmer has no control over which operations are performed
concurrently, so these are also single instruction stream machines®. Even in muitiple
instruction stream processing there can still be a spectrum of communication schemes.
Networks of computers and multiprocessirg computers with common memory are are
defined to be multiple instruction siream machines only when a programmer can
specify concurrent operations and these operations can be performed concurrently.

A multiple Instruction stream program Is defined to be a program In which two
subparts of the program can be specified to execute concurrently. Since these are

ta pipeline machine has multiple data streams as far as a programmer |s concerned,
but actually the stream of data comes into the pipe sequentially.

(B T N .

1.A Introduction 1-6

subparts of a totai there is some reiationship between them. The reiationship must be
in the form of some common date communication and/or shering. If the subparts are
named A and B then at ieast one of the following must occur: data progress from A to
B, from B to A, from some C to A and B, or from A and B to some C. (Figure 1-1 shows
the possible reiationships between two processes in a directed graph notation) When
dsts progress from one program to another it means that the second program uses
some resuits of the first in its computations. Of course, other processing may
manipuiste the deta between the processing of two subprograms and sdditional date
may be provided to the second prcgram from sources other than the first program

(and the first prcgram can provide dats to other programs).

A o c
® © O

Figure I-1. Possibie relationships between two processes, Aasnd B

If A and B are reiated, one of these relationships must hoid; otherwise Asnd B

wouid be unreiated and thus not subparts of the ssme program. In the first and
second cases one subprogram sends dats to the other and continues to process after
sending data to the second subprogram. In the third case, data can progress to both A
and B from a common source and aii three can be processed at the same time. In the
last case, A and B can be processed simultaneousiy and esch [s abie to send data to

the same third process, C.

e R b, L

1.B Direction of this work I-6
1.B. Direction of this work

At present there are no proven guidelines on how to structure a problem for
irnplementation in a multiple-instruction-stream multiprocessing environment. Rather
than address the guidelines problem di.rectly, this work presents a design environment,
a sel of evaluation tools, and a design approach whereby a system designer can
explore attritutes of alternative program decompositions. A major premise for this
research ‘s that the communication pattern among, concurrent procssses is critical to a
system’s performance. The goal is to identify issues end (D make predictions which
will provide some practical information to the system designer at an early stage and
also during later program tuning. This research has been directed towards solving a
more specific set of problems than those presented in the previous list, namely:

1. How can interactions among the concurrent computations be modeled?

2. Are the interactions safe, i.e. deadlock free? For example, can one show

that a program never arrives at a state in which one process is trying to
communicate with a second process while the second is waiting to send a

communication to the first process?

3. When the structure is not deaclock free, whet is the probability of a
deadlock?

4. Where will most of the process and communication activity occur?

5. Where ttlenecks occur, and how may they be relieved? For
examp introduction of buffers or additional processes help?

6. Are there working sets of processes? If certain subsets of processes
tend to be active at different times then fewer processors will be
required for a program (and consequently less parallelism can be
attained).

7. What are the effects of restricting the number of processors? What are
the effects of alternative scheduling algorithms?

These questions were chosen because they may present hidden problems to

1.B Directlon of this work 1-7

the system designer. Inexpensive and fast approximate answers to these questlons
should be useful when a program is being designed and also when it Is belng tuned to
Improve a program's periormance.

Currently there are no generally accepted languages or graphical techniques
for representing or modeling a multiprocessing computation and the communication
interactions among processes. Thus problems that might be prevented by a clear
algorithmic description technique may still occur. However a system designer has some
understanding of the relationships among the parts of his system. He can implement
the subparts in many different languages, but it is the interfaces between the subparts
that are usually not we!l described. Parnas [Parnas 71] has suggested communication

schema to be used while creating communicating modules, but has not described how

to represent the communications in an entire system. This lack of global view may

prevent the recognition of potential problems. This, then, illustrates the importance of
discovering a method for the automatic detection of deadlocked structures and
potential deadlocked structures. If the system designer can easily identify in advance
where he may have made such an error, then he is spared the task of finding the
problem later. It would be preferable to prevent such probiems, since many of the
criteria for preventing deadlocks are known; however, in complex systems it is
increasingly difficult to be aware of all potential deadlock conditions.

If the system designer is able to estimate which particular subparts of his
system wlil contain the largest amount of activity, then these subparts will be the most
appropriate places to expend effort to Improve performance.

The ability to compare the potential performance of alternate systems easily is

extremely important. Almost all disciplines concerned with the creatlon of large

s s AP £ AT M Mt e | e Sl & e gl e e e s vt

1.C Other work bearing on the problem -5

interacting subsystems use the technique of rmocaling the behsvior of the whole
system and extrapolating the performance of this model to deduce properties of the
large system. Examples of this technique range from the use of wind tunnels and
analcg simulation of fluid flow to discrete computer simulations of supermarket check-
out counters. A tnol for the prediction of computer system decomposition performance
should be just as useful. An important aspect of a design system is how easily the
designer can alter the attributes of his system and determine the effects of those
changes.

We feel that important assets of design tools are that they:

1. be easy to use,

2. provide results quickly,

3. be interactive (when using a computer system), and

4. make it easy to perform design Iterations.

1.C. Other work bearing on the problem

Several kinds of tools are available to a system designer. These tools include
graph models, queueing theory models, simulation languages, programming languages
and theories of design of complex systems. Each of these tools can be useful at some
time during the design and construction of & multiprocessing program. Graph models
are usually used to represent multiprocessing computations and for analysis of control
flow within a program. Queueing theory is used to predict and study performance of
simplified models of complex processes. Simulation is an approach to modeling more

complex systems to obtain similar performance predictions. Programming languages

I.C Other work bearing on the problem I-9

ere tools for explicitly representing multiprocess algorithms. They also may contain
orimitive operators that can facilitete proofs of properties of programs. Design
theorles, such as that of Parnas, provide techniques that facilitate construction of
complex systems and their understanding. No one tool is comprehensive enough to use
es a quickly obtained predictor of the performance of a multiprocess program.

With sufficient instrumentation the behavior of a multiprocess program can be
measured. These data can be used in several ways to predict behavior changes when
some system parameters and structures are modified. Again queueing theory and
simulation techniques are useful tools for these predictions. As before neither method
necessarily provides fast predictions of the sensitlvity of performance to changes in
program parameter and structure.

The following are brief presentations of some tools that bear a relationship to
those that will be presented later. It will be seen that the purely analytic techniques
are often too restrictive on assumptions, not useful for overall program design, and of
limited applicability dus to computational complexity. The simulation techniques require
too much effort both to construct a simulation and to modify It to achieve results

concerning alternate program decompositions.

1.C.1. Petri neta

After the original formulation of Petri nets [Petri 62] several MIT researchers
[Dennis 70, qut 70, Paterson 70, Rodriguez 67] refined forms of the original model as
useful tools for studying concurrent processes. A Petri net looks like a directed graph
in which marks or tokens are placed on some of the arcs. (Only connected graphs are

of interest.) These tokens move about the graph to represent flow of control. When

S/ WITIWY W W1 Ty W W T ' W' Vet e et

tokens are present on all of the Input arcs to a node, that ncde Is able to "fire." After
a node fires, one token is removed from each input & and a token is placed on each
output arc of that node. In fact, a Petri net Is not a directed graph [Berge 62]

because it Is possible for one arc to poir! to or come from more than one node. A

restricted Petrl net called a marked graph [Holt 70] permits arc Initlation and

termination only at single nodes (not necessarily the same). Multiple arcs can stlll be
connected to each rode. In contrast, a restricted Petri net becomes a finite state
automaton (state transition diagram [Holt 70]) by only permiting one arc to enter each
node and one arc to leava each node. (Arcs can have multiple starting points and
terminal points.) In Figures 1-2, I-3, and I-4 the nodes are represented by straight

lines and the arcs are arrows with a circle that can contaln the tokens (represented by

dots).

Figure 1-2. A Marked graph

1,001

Figure 1-3. A finite state atomaton.

1.C Other work bearing on the problem I-11

O

Figure I-4. A Petri net that is neither a marked graph nor a finite state
atomaton.

Marked graphs are the oniy form of Petri nets that have been used tn study
concurrent processes. The general Petri net can be too compiex and the state
transition diagram can not be used to model concurrent processing. Marked graphs
are used by modeling the potential flow of control in a system and then analyzing
possibie markings in order to make predictions about future markings. Issues
investigated, for a particular initai marking, inciude:

1. Determine whether nodes will eventualiy activate (fire). In Petrl net

terminology the question is whether a node is "safe” [Holt 70]) If ail

nodes are safe the net is "safe,” i.e. all nodes can be activated.

2. Count the number of activations of a node. The important counts are O, n,
and infinity.

3. Determine whether the initial marking can iead to another particuiar
marking.

4. ldentify nodes that can fire concurrentiy.

There are severai difficuities in using Petri nets. One is that interesting
examples require a iarge number of nodes [Dennis 70, Meriin 75]). There are so many
nodes that it is difficuit to do any analysis. In addition, none of the enaiysis is
mechanical. Another difficuity is that controi fiow in the graphs is compistely

determined with no accounting for rates of processing at each node.

R LTSS TTRN 7 TNy re—" v

1.C.2. The UCLA model

The original goal of the UCLA model was to "represent programs to be run on
variable structure computers” [Baer 73, Estrin 63] Thus its purpose was to help
describe concurrent compulalions rather than to study the performance of algorithms.
However some extensions of, and associated restrictions on, the original modei allow
for performance predictions in some restricted cases to determine the termination of
loops, the determinacy of representations [Regis 72], and the reduction of graphical
forms [Bovet 65] In addition the UCLA model has been used to study the automatic
conversion of FORTRAN-like programs to a parallei computation form.

The basic form of the model is a directed binary graph. Most studies using this
model use an acyclic structure. The graph shows processing dependencies and, as
iong as an acyciic modei is used, potentiaily concurrent operations can b easily
identified. Each node may have at most two entry arcs and also at most two exit ai.r.
The ruies for firlng a node are defined as part of the node. The node's flring ruie
depends on the enabling of the input arcs and the node’s resuit rule cause some of its
output arcs to be enabled. A node wili not fire if any of its output arcs are aiready
enabled. Once a node fires the input arcs causing that node to flre are disabled. (See
Figure I1-5)

In the UCLA mode!, branching and merging control ficw are modeied with EOR
type nodes. Concurrency is modeled by the use of AND type nodes.

Further restrictions are placed on the form of the UCLA graph model. There
must be a unique initial vertex (only output arcs) and a unique terminal vertex (only
input arcs). Another restriction is th;fat ali subgraphs must be AND type. This means

that if a choice is rnade at an EOR output node then it must stiil be possibie for the

e

i, B ®

L L R e

Gt oy A ek W l-mza”—-p---._. -

P S TP I T

’
i Sl e v il s disde e

Srwf WRITWT V9V Wl I8 WMWY T T ¢

o AND input node

AND input type fires only If both input arcs have been enabled.

*
° EOR Input node

EOR input type fires only if exactiy one of the input arcs has been enabled.

e AND output node

L]

AND output type enables both of the node’s output arcs after the node has fired.

a

}op EOR output node

EOR output type enables exactly one of the node’s output arcs aiter a node has flred
(which one is undetermined).

Figure 1-5. UCLA Model Nodes.

termina! node to fire. In addition It should not be possible for both arcs of an EOR
Input node to be enabled at once. The gquestion of determinacy of a graph is
subsumed by the question of legal graphs. Legal graphs are those that start at the

Initial node and are guaranteed to terminate at the terminal node. When loops are

L e a0 i B A s A e o

I.C Other work bearing on the problem . 1-14

allowed, any loop must be able to terminate. Most who have used the model have
assumed acyclic structures in order fo guarartee loop termination (naturally, no loops).
The analytic technique used to ignore loops is to expend all loops by some finite
repetition. The repetition factor is determined by a probabilistic argument [Martin 67].
The question of mean path length in a directed acyclic binary graph has been
studied at UCLA. Probabilities are assigned to each arc and computation times are
assigned to each node. These are used to determine the probability of traversing
paths through a legal graph and to estimate ‘the mean path time of a graph [Martin 69]
One may also determine the maximum number of procsssors riquired by the graph
[Baer 69) under the same restrictions.
The ditficulties with using the UCLA model also involve the need for a large
" number of nodes to represent interesting structures. This is particularly true since
aach node has at most two input arcs and at most two output arcs. Another problem is
that most results have been dependent =n acyclic models. Thus the mechanical
techniques for proving legal graphs, etc. are only applicable to a restricted set of
programs representable by the model.

]

1.C.3. An algebraic model of interprocess communication

In his dissertation [Riddle 72}, Riddle presented a methodology for modeling
and analyzing supervisory systems, but the work can be applied to the problem of
analyzing any complex asynchronous system. He found the same difficulties with Petri
nets and other models as those reported in earlier sections of this chapter.

Riddle presented an explicit program-like description of the operation of a

process. This description was only concerned with the interprocess communlcation

1.C Other work bearing on the problem I-15

relationships of each process. However the description was close enough to being a
program that each process required information concerning the type of intarprocess
messages. Therefore the descriptions of processes were themselves fairly complex.

The model was also based ¢n a directed graph structure representing
interprocess communication. A graph consisted of two types of nodes, process nodes
and link nodes. The link nodes had properties that could require a certain amount of
computation associated with them, e.g. queueing disciplines.

One of the goals of Riddle’s research was the dévelopment of an algebra to
describe interprocess communication. Algebraic expressions could be used to describe
pCssible communication paths in a modal. By using the graphical structure, the
program-like descriptions, and the algebraic expressions, theorems were developed to
analyze the behavior of a modeled system. The creation of all algebraic expressions is
pertormed by the inspection of a graph. The proof of theorems concerning the
behavior of a system, as described by the algebra, is not a mechanical process. Riddle
did provide a set of theorems that can be used in a proof.

The examples that Riddle studied were based on communication paths of a
given system. He determined what termination and deadlock meant for that system and
was able to derive proofs showing that the system terminated and contained no
deadlocks. The questions he posed were specific to the system being modeled and
required the creation of algebraic expressions ior each question concerning system
behavior. These algebraic expressions were not necessarily easy to create and the
proofs of theorenis were not very easy to construct.

The tools that Riddle’s research provides may be used for the design of

multiprocessing programs. The drawbacks to his approach are the difficulty and effort

1.D The STEPPS System I-16

required to create the algebraic expressions needed to represent a model, and the
expressions representing communication within a model. The expression proof process

is also fairly tedious.

I.D. The STEPPS System

All of the models discussed in the previous section are tools for the analysis of
multiprocass programs. A common drawback of each model is that results must be
obtained through detailed, non-mechanical analysis. A second drawback is that none
contains the processing rates of the various processes of a multiprocess program as
part of the model. The speed and ease of obtaining results and the ability to include
expected timing of attributes of a program can be especially useful when making early
dosign decisions concerning the structure oflal p;ogram.

The design methodology presented in this thesis is based on an interactive
system utilizing a particular model of muitiple instruction stream problem
decomposition. The system and the model are called STEPPS (Some Tools for
Evaluating Parallel Processing Systems). The methodology of designing a programming
system has become an interesting and important question in the last few years [Brinch
Hansen 74, Dahl 72, Mills 71, Parnas 72, Parnas 75, Weinberg 71} The author
subscribes to the "top down" apprcach to system design [Simon 62] Thus a "natural”
approach to building a system that will contain potentially concurrently executing
subparts is to decompose a system into functionally independent subparts and
describe the communication structure among the subparts before explicitly defining the

operation of the subparts. For example, when designing a compiler one might say that

o

1.D The STEPPS System 1-17

the LEXICAL-ANALYSER and the SYNTAX-ANALYSER could process in a plpeline manner

with the LEXICAL-ANALYSER sending resuits to the SYNTAX-ANALYSER. A convenlant

_notation is a directed graph notation with the restriction that the connections between

two processes must go through an explicitly designated (and named) connecting LINK
(see Figure 1-6). At this stage of decomposition only potentlal communication is
important and data dependent communication (i.e. decisions based upon data) is not

consldered at all.

LEXICAL-ANALYSER \I 3| SYNTAX ANALYSER

Figure 1-6. Pipeline.

Each of the previously discussed models considers interprocess communication
patterns to be impcrtant for understanding the performance of multiprocess programs.
Both the Petri-net and the L:La model represent interprocess commurlication by
means of the movement of untyr»d tokens. Queueing models of multiple processes
9’ '0 use typeless tokens to represent flow of control. Riddle was able to simplify
some interprocess connectlcns in his model schema and to enhance analysls by
Introducing type identification for iokens.

The STEPPS model uses typeless tokens to represent flow among processes.
The study of interprocess communication sugges!s seversl measures of multiprocess
performance such as queue Iengths, deadiocking, and potential concurrency. A
difference between this model and the earlier modeis Is that a STEPPS process must

be ready for a message before "firlng" (due to the arrival of a message) instead of Its

S S o cane e

-

1.D The STEPPS System 1-18

firing being dependent on logical relations of the messages available on paths to It.*

1.D.1. The STEPPS model: an informal description

The STEPPS model includes both probabilistic and timing expectations for
describing individual process activity. Whereas a standard probabilistic model, i.e.
Poisson, treats processes as operating on messages, the STEPPS model process
includes a natural relationship between a process’ input/output activities. In addition,
the introduction of time parameters allows for better estimation of a program’s
operational concurrency instead of potential concurrency. The model represents
multiprocessing at the message conmunication level and is not intended to represent
other multiprocessing problems such as memory interference and specific programming
techniques.

Concurrency can be modeled by having a single process send data to more

than one other process. Data streams are explicitly merged when a process receives

data from more than one other process. In the descriptions of processes, more than

one arrow may leave a process node or enter a process node. If a process node is
able to receive data from any of several processes, but the receiving process does not
care which process sent the data, several arrows enter a linknode and only one leaves
it. 1f one of several processes may operate on data produced by another process this
is represented by more than one arrow emanating from a linknode aind going to the

separate process nodes.

*In Riddle’s model a process must be explicitly programmed to accept a message.

1.0 The STEPPS System

Example 1.D-1

Consider the problem of building an oniine university registration
system. This system wouid handie ail of the scheduiing and student
record keeping for a university. One might decompose the problem into
the graph of Figure I-7. Students’ requests are handied either by a
Schedule Requester or Schedule Updater, each of which processes the
request and sends data to a Scheduier. The Scheduier sends data to
the Data Base 3nd then sends results to a Scheduie Output process.
Requests to the system may aiso come from the Registrar. These
requests may also go to the Data Base and on return data is sent to the
Registrar Output by the Transcript request process. There also may be
requosts for grades. The date base may access data in either the
Current Semester or its Archives.

I-19

All data traveis through paths between nodes (the LINKS end the

PROCESSES) in units caiied messages and all queusing of messages occurs at each

LINK. Requests for data from o LINK are handied in a FIFO (First In, First Out) manner

by the LINK. The next step is to describe the action of a PROCESS node. Since only

the communication paths are important at this point of design, only the message

handiing properties of a procass are described. The source of data is not identifiabie,

80 & proceas neither knows which process sent the data to the LINK attached to any of

ita “input ports” nor does it know which processes are attached to the LINK that is

ettached to any of its "output ports.” The reason for this restriction is that messages

contain no information such as sender or receiver identity. This will be shown not to

cause difficulty in using the model.

The execution sequence of a process is:

1. perform an input or output operation,

2. choose which input or output port wiil be active next,
3. compute for some time, and

4. repeat 1 to 4.

o Tt - g-.} rub
teAagna B T qntue WA o~ - .

1.0 The STEPPS System

Student
Requests

v

——

Data
Base

Y
Schedule Schedule
Request Update
Scheduler
—
v
N i
\
Schedule
Output Current
Semester

1-20
Registrar
Requests
—Y_
- Grade
1 Request
Transcript
Request [
Registrar
Qutput

\

Archives

Figure I-7. Registrar’s Data Retrieval System

Each process is a uniprocess and can only perform one input or output

operation at a time.

The method of describing how each process operates in the STEPPS model

requires that each port be named. For convenience, the notation used is to assign a

e i R i e R L Lin o bt

M e ol e R
Fo I TR TR gl © p— o — e
ik L e ,ﬂ“q.}

NP NS T

1.0 The STEPPS System I-21

type of either "I" for input or "0" for output and a number. A transition matrix for
each process defines the probability of succeeding the activation of one port with the
activation of another port. The informal definition state of @ process refers to the most
recent port activation (in this thesis, states correspond to pert activations). The
process remalns In the same state while it is computing and enters a new stete at the

next activation of a port. In most contexts the terms "ciate” and “port” are used

interchangeably.

Example 1.D-2

ALPHA is a process with two input ports, 10 and 12, and two output
ports, O1 and 02. 10 may transfer to state O1 or 02. 12 may transfer
to state O1 or 02. Ol may oniy transfer to state 10. 02 may transfer
oniy to state 12. The graph and transition matrix for this process Is
shown in Figure 1-8.

Graph notation

« |0l 12 =
ALPHA
- 10 ozl

Transition matrix (without timing)

ALPHA 0o 12 01 02
10 0 0 o Il-o
12 0 0 b 1I-b
0l 1 0 0 O
02 o 1 0 O

Figure 1-8. Process ALPHA

The transition matrix makes it possible to describe the splitting of processing,
the merging of processing, and the choice of alternate computation paths. In Example

1.D0-2, after an input from port 10, process ALPHA can enter either state 01 or 02 (with

i

5

1.D The STEPPS System 1-22

probability of "s" to Ol and "] - a" to 02). State Ol always enters state 10 as the
next state.

Other features of a STEPPS model that can be specified are:

1. the initial state of each process,

2. the number of messages that a port may receive oOr send before the
process changes state,

3. the amount of computation time, defined for each transition, that a process
computes before a transition takes place (this is fixed, but random
variable computation times can be approximated),

4. the amount of computation time taken by a LINK to accept or send a
message, or to restart when it is not already handling communication of
messages, and

5. the queue size limits for each link and the initial number of messages in
each link,

The model that has just been described subsumes both the Petri net and the
UCLA model. The links and nodes of Petri net and STEPPS models are very similar;
each is equivalent to the corresponding STEPPS model shown in Figure 1-9. Figure I-
10 also shows the reiationships between the UCLA model and the STEPPS modei.

The STEPPS model allows for a more general specification of data flow then the
earlier models since it is possible to describe the probabilities that particular data
paths may be taken. When a message is accepted by a process it is easy to specify
which data paths are more likely. As further information about the system being
designed is learned or when the effects of alternate data path specification are taken

into account, probabilitizs are altered by the system designers to fit the new

_ structure.

1.D The STEPPS System 1-23

Petri STEPPS

The input port accepts N messages before chaiging state to an output port; the

transition between the output ports occurs in a sequence; and the last output state
transfers to the input port.

Petri STEPPS

The input state accepts only 1 message and the transition to each output state is

equally likely. Each output state transfers to the input state. The link may be able to
hold more than one message.

Figure 1-9. Mapping Between Petri nets and STEPPS model.

1.D The STEPPS System 1-24

UCLA STEPPS

oA

The input state accepts 2 messages before transferring to an output state.

UCLA STEPPS

| 5
The link has a limit of one message, so only one message can get to the process. The

process input port accepts 1 message before transferring to an output state.

UCLA STEPPS

oS!

The transition matrix sequences through the two output ports.

UCLA STEPPS

IO O

The transition matrix shows an equal likelihood of transferring to each output port
from the input ports. After an output the process will perform an input.

Figure 1-10. Mapping of UCLA model to STEPPS.

L.E The STEPPS system and simulator 1-25

L.E. The STEPPS system and simulator

Once a propnsed multiprocessing program has been modeled, the model can be
implemented in the STEPPS interactive system in order to evaluate the particular
decomposition. The data entry language for STEPPS has been designed for
conciseness. A linear description of a directed graph and the associated transition
matrices may require the entry of a fairly large amount of data. To facilitate the entry
of these uata, it is possible to recall previously stored data. The system designer can
manipulate his model in any way he chooses, e. g. remove nodes, change parameter
specifications, or display parts or all of his model. It is always possible to save the
desctiption of the model or parts of it externally in a form that may be recalled by the
STEPPS system or examined on hardcopy.

Several useful tools are available to help the system designer evaluate the
structure of his decomposition. As a basic step, a STEPPS model can be certified as
being a well-formed model. A STEPPS model is well-formed when:

I. For each process, every state is attainable from any other state (If a
process has N states, and X and Y are any two of them (possibly the
same), the probability of starting in state X and entering state Y in N or
fewer transitions is greater than zero. This restriction Is discussed In
later chapters.); and

2. All ports of each process are attached to links;

3. All links are attached to both input and output ports;

4. The graph is connected. (When the directions of paths are ignored then
there exists a path between every pair of nodes.)

At some point it should be possible to simulate the execution of the modeled
program; thus the STEPPS system contains a model simulator. However, there remain

problems which can prevent a successful simulation of a program structure. One

T Iy TR T Tp N TTY L Cppa . R— - S —— TR e - .t il
X b’ be. iy e £ B R T, 7 T T N T W N GNP I — PR R e - U e e . ¥ Sl

1L.E The STEPPS system and simulator 1-26

problem is that the initial state of the processes and the initial message capaclties of
the links might be incompatibie. This would cause a simulation to halt almost

immediately. Another problem is one of possible communication deadlocks. These

problems are discussed in Chapter Iv.

1E.1. Deadlocks

A process may deadiock in either of two situations:

1. no messages wiii ever be availabie at the link attached to an active input
port, or

2. the capacity of the iink attached to an active output port has been
reached, and no messages wii! =var be able to ieave the link.

Deadlocks may occur when a process can depend on itself improperly. They

may also occur when a set of processes are incompatible for reasons other than data

loops.

Example 1.E-1

Figure 1-11 shows process A waiting for data from B while B is waiting
for data from A. If the initial state of A is changed to be Ol then the
process has no deadiocks. If an additional change is made to A so that
state O1 or 11 is activated more than once and B 's not changed, then
this is again unsafe because a link will eventually overflow or never

have enough data.

Example 1.E-2

Figure 1-12 shows a non-ioop siructure where there wiii be a deadlock
as soon as the L1 queue limit is raached.

None of the structures presented in Examples L.E-1 and L.E-2 showed problems

that can occur when a process has a choice of successive states. There are other

R R R T IR R Tl I T

i.E The STEPPS system and simulator 1-27

L1
N 1
01 >
2
A I le le. 01 8
I
L2
A 11 Ol
1% c 1
01 1 0
B 11 01
I1% c 1
01 1 0
Figure I-11. Incompatible Ioop.?
L1
s
A o1 >1 > 11 B
02 >i 12
L2
A 01 02
01[2])s 0 1
02 1 0
B Il 12
I1s o1
12[2] 1 0

Figure I-12. Incompatible n0n-loop.¢

deadlock producing structures. For example a process may be set up to produce

either N or M messages and the safety of this structure must be recognizable.

TThe asterisk in the example means that this is the initial state.

4:01[2] means two occurrences of Ol before changing state.

T o e Uy g e

IR ~ VR I 7 N R R AT U S N NER ()/ | S Y S g— e RN e e mmmw”j
A "

1.E The STEPPS system and simulator 1-28

The deadlock problem may be dealt with in two ways. One alternative Is to
require any program decompos.tion tu be deadiock-frae.

A second alternative is to determine where deadlocks may occur and the
probability of a deadlock. The existence .°' deadlocks in real systems is not always
bad as long as a suitable response can be made. Fur example, the ARPA network Is
not deadlock free [Kleinrock 7561 However, when a deadlock Is suspected the system
"times out" and requires reinitialization of a data message. This is a reasonable
solution under some circumstances, but only when a system can lose information.
STEPPS provides tools to recognize the possible occurrence of deadlocks.

The algorithms used to identify deadlocks are basically specialized graph
reduction techniques. A model is viewed as a graph whose nodes are the processes
and links. Under application of these reductions, a safe model will collapse to a graph
contalning no nodes. If the graph does not collapse then a deadlock is possible.?

As already noted, a STEPPS model of a program can be quite general. If a
model is acyclic and meets other criteria set by Martin [Martin 69] it is possible to
estimate mean path time; however, these criteria are quite restrictive. In genera. It is
not possible to estimate mean path time through a STEPPS mode! without simulation.
Ordinary systems analvsis techniques such as queueing theory and dynamic
programming models are intractabie in all but the simplest cases [Fishman 73, Gordon
69). 1t is for this reason that a simulator is 2 basic part of the STEPPS system.

The simulator is easy to use since it is a specialized system and requires no
programming. Naturally, any STEPPS model can be simulated using GPSS, SIMSCRIPT,

SIMULA, or any other simulation language. However the effort required to reprogram

*Chapter IV discusses the deadlock problem and past work In the area.

LE The STEPPS system and simulator 1-29

a general model Is not well spent at the design stage of building & multlproceszing
program. It is at this early stage of program development that the designer needs
Information about possible program decompositions, and the flexibility to be able to
alter his design easily and make new evaluations. If variations in the decomposition
needed to be reprogrammed, the understanding of alternative systems would be a
more dif* cult process than comparing alternative models using the STEPPS system.

A variety of simulation parameters can be easily altered for comparing their
effects on simulation results. These parameters include: restricting the number of
available processors, identifying processor competing and'nOnCOmpeting processes, and
varying process scheduling algorithms.

The STEPPS simulator has a set of data gathering functions which help the
designer evaluate a particular decomposition. Some of the estimations that are made
based on the data are:

1. The expected time that each process is in each state. This can be
determined without simulation if only the processing time Is of Interest,
but when process wait time is :ncluded it is too difficult to estimate the
time spent in each state.

2. The expected number of messages | each queue.

The expected number of processes waiting to send a message to each link.

The expected number of processes waiting for a message from each link.

m s W

The expected number of processes that will be executing simultaneously.
This can be used to estimate the number of processors needed.

This list is not complete for all uses of the simulator. The system has been
designed so that it is not difficult to include additional measurement functions.
The simulation times required to obtain these estimates vary with the

complexity of a model. Usually, useful estimates can be obtained with a few minutes of

e

1-30

DEC PDP-10 compute time. The complexity of a graph is dependent on such aftributes

as the number of connections, choice of process states, and link delays.

1 F. Thesis contributions and outline of remainder of thesis

The contributions of this thesis are tools that a system designer can use to
enhance the overall design of a multiprocess program. These tools, presented as the
STEPPS system, are based on a model that is described precisely in Chapter IL
Chapter I also discusses the STEPPS system’s capabilities (Appendix A is a manual for
the STEPPS system). Examples of how the STEPPS model can be used to model a
variety of multiprocess structures are presented in Chapter III. In addition, Chapter 11
presents two larger examples: one of the use of the STEPPS system in a user’s early
design stage and the other of the use of the STEPPS system in system tuning. The
deadlock reduction algorithm is presented as a set of theorems with proofs in Chapter
IV. Other model analysis capabilities are also discussed. The STEPPS simulator and
data gathering facilities are discussed in Chapter V. Chapter VI contains a review of
the thesis results, the limitations of this research, conclusions and directions for

furthsr research.

1I-1

Chapter II
The STEPPS Model

This chapter provides some formalisms for later use and a precise definition of
the STEPPS model. Chanter | presented an informal description of the model and the

interactive design environment based on the model.

I1.A. Modeling the behavior of a process

The term process describes the utilization of the processing unit of a single
instruction stream-single data stream computer (SISD). A "process” has sometimes
been defined as the execution of a program. For the purposes of this research, that
definition is too limited, since it does not take into account data transfers and accesses.
A process, as defined for the STEPPS model, exists in one of the followIng conditions:

1. processing (computing) before performing an input or output operation,

2. waiting to access an external resource that must be accessed exclusively
(simultaneous accesses are modeled by allowing zero time between
accesses), and

3. waiting to complete an input or output operation.

A process is modeled as a processing unit which can perform operations
internally, and which then must communicate with other units through one of several
ports. The communication occurs when a process zither requests or provides a unit of
information. Each port belonging to 8 process has only one function: Input to the

process or output from the process.

The internal operations of a process are unknown to an observer of a process.

11.A Modeling the behavior of a process 11-2

Al that can be determined is the relationships among the activities of the process’s
ports. Externally these relationships appear as probabilistic transfers of activity from
one port to another, plus a computation time between port activities. In general, the
computation time between any two successive por! activations is dependent on the
particular ports. Such process activities as accessing resources and sharing resources
are modeled in terms of interprocess connections and message flow.

As defined in Chapter I, the state of a process refers to the most recent
activation of or attempt to activate a port. This was an informal use of the term
"state” since, more precisely, a process can be In the state of waiting to activate a
port, activating a port (doing the port’s activation), computing before the next port
activation, etc. The imprecise definition of "state" will be used in most contexts, and it
will be made clear when the more precise meaning is used.

This definition of the state of a process is an abstraction based on potential
communications between a process and other processes. In addition, the concept of
time is included in the model to allow a designer to include processing time for
. computation during simulations. An important abstraction is that STEPPS processes are
not deterministic since port activations are based on probabilities and not on a data
directed control structure. The disadvantage in this is the inability to represent
programs on an instruction level. The advantage is that all potential communication
alternatives are emphasized.

The complete operation of a process is described by the following loop
(assuming the process starts in some initial state):

1. Perform the input or output operation associated with the present state.

This may involve waiting to access an external resource and waiting for
the input/output operation to complete. Both waiting times are
considered as time spent in a state while not processing. This step can be

repeated a specified number of times before the next step.

2. Choose a new state. By a probabilistic method, described below, a
successor state is chosen, but not yet entered.

i

11.B Data flow and links 11-3

3. Process (compute) for a length of time as determined by the transition
from the present state to the next.

4. Enter the new state and repeat 1 through 4.

Given the knowledge of the present state, probabilities for entering any of the
process’s states are defined. Since the state of a process is related to the activity of a
port, probabliities are defined for potential successive port activations from every port
activation. Note that the choice of a successor state is dependent on the present
state. In addition, step 3 above implies that a processing time parameter is associated
with each transition and step 1 suggests that possible communication time is associated
with a port activation.

Two.restrlctive assumptions are basic to this model. They are that (1) a
process can not be interrupted (ie. the transition mgtrix completely describes a
process’ activity) and (2) processes are neither created nor destroyed dynamically.
These restrictions are used to keep the model relatively simple; they also make it
possible to perform the deadlock test by graph reduction (Chapter lV).f The lack of
dynamic process creation and destruction can be approximated by including multiple
copies of processes, but there is no way to use the STEPPS system to model process

Interrupts and preemption.

ILE. Data flow and links

The previous section refers to units of information that are elther requested or

produced by a process. A unit of information is called a message. The number of

tThese resirictions are examples of a tradeoff between analysis and representations.
Some system structures might have been easier to represent if there were, for
example, typed messages or dynamic process creation. However, automated system
structural analysis was not found to be feasible when these richer representations
were considered.

e g

11.B Data flow and links 11-4

messages in @ STEPPS model need not be conserved. Thus a process may successively
request messages from each of two input ports, yield a single message on an output
port, and then request more messages from an input port. A property of a message i
that it is only a token of information. It does not actually contain any informatlon used
within the model. A process can not use the contents or type of a message to decide
on future activity. Only the existence of a message is meaningful to @ STEPPS process.
This restriction wlll be shown not to affect substantially the class of program
structures that can be modeled with the STEPPS model. The major restriction 1s that
processes are completely defined by their transition matrices and can not be
preempted. Thus systems that contain parent/sibling process dependencies where the
parent process can stop, restart, or terminate a sibling process can not be modeled.

Processes are connected via links. Each port of every process is connected to
exact! one link, but a link may be attached to several ports of both input and output
variety. Messages enter a link from output ports and leave a link going to input ports.
Requests for messages from input ports are handled on 8 first in - first out basis.

The link is the resource that can only be accessed by one process at @ time.
This access may take zero time, but the restriction is used to prevent race conditions.
For this reason the STEPPS model includes a method that guarantees mutual, exclusive
access to a link. Since a process may only perform one input or output operation at a
time, it can only access one link at a time, so there is no opportunity for a “deadly
embrace"! due to the accessing of links.

The STEPPS mode! can be used to model the situation where there Is a non-
2ero overhead for message transmission. The properties of a link aro:

A deadly embrace, as defined by Dijkstra, Habermann and others, occurs when two
processing objects are able to reserve more than one resource at a time without all
resources being reserved initially. For example; process A reserves resource X;
process B reserves resource y; process A needs resource y and can not continue until
B relinquishes it; process B needs resource x and can not continue until A relinquishes
it. Neither process A nor B will be able to continue.

I1.B Data flow and links 11-5
1. It can store a limited number of messages.
2. It may take a certain amount of delay iime to either accept or transmit a
message (same delay time for accepting or transmitting).
3. Time may be required to start up a link when it is not aiready active T
4. It may initially contain a specifiable number of message tokens.
5. It can receive requests for messages and transmit a message to a

requestor if a message is availabie or force the requestor to wait in a
queue {whose size is dependent on the number of processes attached to
the link) untii # message becomes available.

A link is not a process but its operation can cause timing delays. When a link

has a start-up time parameter set to be greater than zero then the link's start-up time

" is significant. The other reasons that a link can force a process to wait in a state are:

1.

2.

The link that is attached to the current state’s port is already in use.

The link has reached its limit of messages and the current state’s port is
an output port.

The link has no messages and the current state’s port is an input port.

The iink’'s defined delay time is taken to perform an input/output
operation.

The complete operation of a link in the STEPPS model is described by the

following loop:

1.

4.

Do nothing untii a process requests the use of the link. Wait for a specific
start-up time (if any).

If the request is for the link to accept a message and if the link’s specified
message limit has not been reached, then accept the message. Otherwise
do nothing, forcing the process trying to send 8 message to wait until a
message is removed from the queue.

If the request is for the link to provide a message and if there are any
messages avallable, then send a message to the process requesting a
message. Otherwise do nothing, forcing the process requesting a message
to wait until a message is sent to the link.

Wait a specified amount of time (if any) for data to transfer.

*A similar situation occurs in a virtual memory system when extra time is necessary to
bring a page that is not currently in use into main memory.

1.C Notation and definitions -6

5. Aiiow the process that is currently accessing the link to continue.

6. If & process is waiting for a message or waiting to send a message then
repeat 2 to 6 (the queue discipiine is FIFO). Otherwise repeat 1 to 6.

11.C. Notation and definitions

The notation that wiii be used in the remainder of this thesis is described here.
Wherever possible the iinear notation wiil be the same as that used as the command
language and display language for the STEPPS system. (See Appendix A for complete
definltions and explanations.)

The attributes associated with a process are: its ports, the links attached to
the ports, its transition matrix, its initiai state, and the number of repetitions of each
state that occurs before the process chooses a new state. The attributes of a link are:
the ports attached to it, its queue size iimit, initiai number of messages in its queuse,
time' tc accept or send a message (delay time), and the time to rastart a link that has

been waiting for activity.

11.C.1. Notation

The foiiowing informai and incompiete "WNF defines ;_t:_rrg_e_* of the syntax of the
STEPPS system used to describe the attri.utes of the process and iink nodes. The
usuai definitions for ietter, number, digit, and other non-terminals with common
descriptive names are assumed.

Generaiiy used terms:

<name> um <lotter> | <name> <digit> | <name> <leiter>
<process name> = <name>

TSome examples wiil use syntax not shown, such as: everything to the right of ""is
ignored and the words Aftribute, Queue, Volume, etc. can be abbreviated. The
compiete syntax is defined in Appendix A,

11.C Notation and definitions 11-7

<link name> <name>
<port name> <process name>.<port type><up to 3 digits>
<port type> 1|0

<process name>.I<up to 3 digits>
<process name>.0<up to 3 digits>

<input port>
<output port>

%R R % E

Connectlons between ports (simple connectlons):

<connection> uw <Input port>e<link name> | <link name>«<output port>

Transition matrices:

<transitlon definition> == <port name><repetition factor> = <initlal
state><transition probabilities and times>

<repetition factor>z= <null> | [<positiva integer less than 262144>]

<initial state> um <null> | ¢

<transitlon probabilities and times> ::= <port id, prob., compute
time> | <port |d, prob., compute time>;<transition
probabilities end times>

<port id, prob., compute time> ::= <port type> <up to 3 digits>: <prob comp>

<prob comp> - <probabllity>|<probability>,<c0mpute time>

<probability> u= <real number between 0 and 1>

<compute time> = <a non-negative real number>|<nuli>

Link sttributes:

<link attributes> u= Attributes <link name> <list of attribute definitions>
<list of attribute definitions> := <attribute definition> |

<attribute definition>, <list of attribute definitlons>
<attribute definitlon> == <attribute name> : <number>
<attribute name> = Queue | Volume | Delay | Startup

Example 11.C-1

ALPHA, L3, L7, and GAMMA are legal process and/or link names.
Consider the following STEPPS commands:

ALPHAIl « L3

L7 « ALPHA.02

Attributes L3 Queue:7, Volume:3, Delay:0.5, Startup:2.5
GAMMALI2[3]= 11: .4, 35; 12: 0; 04: .6, 1.5
GAMMA.04 =2 12: 5; 04: 0.5, 7.5

The first two lines ars examples of the notation for connectlons. The
third line displays the attributes of a link. The last two lines show how
transition probabilitles are represented. Thus the probability of
entering GAMMA.O4 from GAMMA.I2 is 0.6 and will take 1.5 units of
time. All STEPPS displays wlll order the ports of a process in numerlcal
order with input ports before output ports. - In addltion, missing
parameters are defaulted (e.g., GAMMA.I1 probabllities).

11.C Notatlon and definitions iI-8

12[3)
1 ALPHA 02 —> — > 11 GAMMA
0a*
L3 L7 J{
Q7 V3 Q1 vo
D05 S:25 D00 S:00
GAMMA 11 12 04
11 033300 023300 0.334,00
12(3] 0.40035 000000 0.600,15
04 000000 050000 050075

Figure II-1. Process and link graphical notationf

Only one port of a process will have a ¢ when a process’s entire transition
matrix is displayed.

A graphic notation used in later sections and chapters is shown in Figure II-1
of the last example. A process is a convex figure and will be represented by either
boxes or circles. Links will always be represented by straight lines. Connections will
be represented by lines with arrow heads denoting the direction that a message would
flow.

Chapter III contains an example set of simple and complex STEPPS models of
program communication structures. These examples demonstrate that the STEPPS
model is expressive enough to represent both toy and non-toy structures while
eliminating the details required by programming languages and the details required by

a Petri-net like model.

- — - - —— - - -

TNot all of the attributes of a process or a link will be displayed in later
examples.

ILC Notation and definitions 11-9

11.C.2. Summary of parameters to the STEPPS model

The foliowing is a compiete iist of the parameters that must be supplied for a

STEPPS modet:t

1.

A connecticn betwaer each process port and a link. Default port
connections are to link "DANGLING".

A transition matrix for each process showing the probabiiity of entering a
new state from each state and the amount of processing time taken before
the transition. Defauit probability values are determined by assigning

equal parts of any unassigned probability to each defaulted transition.
Default compute times are zero.

The initial state of each process (04s). The first port deflned is the
defaulted initial state.

The number of times a port activation can repeat before a new state Is
entered (12[3]). Default is 1.

The maximum queue length ailowed for each link (Q:7). Default is 1.
The initial number of messages in each queue (V:3). Defauit is 0.
The delay time caused by the operation of each link (D:2.5). Default is 0.0.

The start-up time to wait when using a link not slready in use (S:0.5).
Defauit is 0.0.

11.C.3. Graph definitions

The STEPPS modei is a graphical model and thus some abstractions have

proven useful in discussing the modei. When a graphicai structure is simiiar to that of

classicai graph theoretical abstractions, the ciassical structure name has been used®.

Some usefui definitions are:

Node -- A node is either a process node or a link node.

refer to Figure II-1.

*Many of the abstractions are based on the text by Berge [Berge 62]

Nt ok e BB e e g

11.C Notation and definitlons II-10

Path -- A path between two nodes is a sequence of nodes with each node connected
to the next one in such a way that a process is connected by an output port to
a link that is connected to an input port of the next process in the path. There
may be many paths between any pair of nodes. A path may include alternate
branches as long as each branch leads to the final node of the path.

Ad jacent -- An input port and an output port are adjacent if they are both connected
to the same link and no other ports are connected to that link.

Attached 1o -- A port is said to be attached to a link if it is connected directly tc tls
link. An input or output port is attached to a (possibly different) process node
if the port is attached to a link that is attached to the process by a link of the
ooposite type. In particular, there must be a path between the port and the
process through only one link.

11.C.4. State definitions

The structure of a process is described by potential transitions among the
states. The following abstractions are used when discussing the properties of states

of a process:

In-sequence -- A subset of the states of a process is said to be in-sequence if the
transition matrix of the process shows that once the process enters one state
of the set then, with probability 1, the process will enter the other states of
the set in a particular sequential order. In addition, no other state of the
process may transfer to any of the elements in the sequence other than the
first state.

Onto -- State x is onto state y if for any sequence of transitions starting at x and
terminating at the first occurrence of y, state x is not reentered.

One-to-2ne -- is a relationship between two states of a process occuring when the
only way for a state to recur Is to enter the other state exactly once and vice
versa. State x is one-to-one with state y if x is onto y and y is onto x.

Immediate-recurrent -- A state is immediate-recurrent if it can return to itself In one
transition. The process may return to the immediate-recurrent state without
entering any other state.

ILD. STEPPS system capabiiities

The STEPPS system Is designed for Interactive use. It -ontains facilities to
enter, manipuiate, dispiay, save and retrievs the description of a model. There are
facilltles to test the legality and consistancy of a description. There Is a faclilty for
the automatic recognition of possible deadiocks. In addition, the STEPPS system
contains a parameterizable modei simulator and facilities to display or copy the data
gethered during a simulation,

The notation defined earlier in this chapter is used both tc enter a model
description and to c splay the model. The displays available include prucesses and link
connections, and trensition values for a port and for a process. All possible paths
between any two processes can be displayed, but this is a very expensive operation
and not recommended because of large memory requirements.

Another ¢=ature of the J7EPPS system i: that it has been designed to facilitate
application of analysis programs that might be defined externally to the STEPPS
system.* Such analysis programs coule written ir Sail [VanLehn 71), Bliss/10 [Wulf
71], or FORTRAN. Thess program. be abls io operate on process transition
matrices, on process c> - tion matriccs, end on the graph connection matrix. The
incorporation of externasity defined functions necessitates a reconfiguration (a new

LOAD) of the STEPPS system, but no program modifications are requirad.

lii-1

Chapter 111

The Use of the STEPPS Approach to Program Design

This chapter presents examples using the STEPPS model and the STEPPS
system. These examples demonstrate that the model is rich enough to represent
several standard program communication structures. One example demonstrates how
the STEPPS system can pe used in the In'ltla! design of a program and another example
Gamonstrates how STEPPS can be used to analyze and help tune a multiprocessor
program that is under construction and was designed without using the STEPPS

system.

[11.A. Use cf *he STEPPS model

The STEPPS modeling schema can be used to represent a variety of program

con.tructs. The program designer controls the amount of detail he wishes to include in

_a model. Since the STEPPS model has been shown to be able to represent the detail

of both the UCLA and Petri net models, It can be used to represent programs at the
same operation level as those models. However, STEPPS is intended to be used to
depict a decompositlon at a mor» moduiar level which more closely represents a
functional system decomposition.

As a consequence of the STEPPS model belng a communications structure
mode!, programming details such as specific data dependent branching, indefinite (but
finite) looping, case statements, and assignment statements are not Intended to be -

modeled. Thus the followlng examples will demonstrate that the STEPPS mode!

R W

S e nion S T Y T R N ST TRy g eI R T T | R R —" W T R T R et e TV ISNTTROE, | pnater—

IILLA Use of the STEPPS model 111-2

abstrection, which is very much less expressive (or powerful) than a programming
language and more - =ressive than the simpler Petri-net or UCLA model, has the

expressive richnes: Jdel some real program structures.

I11.A.1. Fork and join

Informally, the ability for the STEPPS model to represent multiple data paths
has already been demonstrated. The situation is that one process can cause more than
one other process to commence processing (Conway’s "fork” [Conway 66]). After
some concurrent processing, the data paths may unite and processing again Gccurs in
only one processing unit (Conway’s "join"). There are several ways to model fork and
join. Figure 1lI-1 shows one method. Process FORK sends a message to both process
UP and process DOWN. In turn, they send messages to process JOIN1. JOIN1 must

receive a message from UP before it requests a message from DOWN.

N
e

S I FORK JOIN1

02

11 DOWN o 12

FORK.I1= + 01:1.0,¢ JOINLI]= % 12:1.0,t
FORK.Ol= 02:1.0 JOINL.I2= 01:1.0,t
FORK.02= 11:1.0 JOIN1.O1= 11:1.0
UP.I1= x 01:1.0,t DOWN.I1 = 2 01:1.0,
UP.Ol = 11:1.0 DOWN.Ol = 11:1.0

Figure IlI-1, Fork and join processes

01 |—p

Bt i sanii N e R b o

1
B Rl o R o

" 111.A Use of the STEPPS model 11-3

1ILLA.2. Subroutline processes

A subroutine process Is a program that can be shared among several different
processes. In terms of a STEPPS model a subroutine is a process that accepts
messages from another process; performs some computation and then sends a message
back to the calling process. Since messages do not contain any identificatlon nor any
other information, the subroutine can not direct a resulting message back to the caller
process. Instead a technique is used whereby the caller waits for a response from the
subroutine before it proceeds. Figure IlI-2 shows a graphical representation of the
subroutine SUBR and the process, CALLER, that calls the subroutine. CALLER calls
SUBR by sending a message to link SUBIN. As soon as the message is accepted
CALLER waits for a reply from link SUBOUT. Within this model each process that wants
to use the subroutine waits its turn to send a message to SUBR. Once the process
sends its request to the subroutine it waits for a reply from the link SUBOUT. The
timing parameters of the subroutine and the caller represent the action of a caller that
does no processing concurrently with a subroutine process.*

A subroutine process can also be called while the caller process continues
processing concurrently. This situation is modeled slightly differently than the one
above. The difference is due to the requirement that the caller process receives the
reply corresponding to its original request. Otherwise a second process could receive
a reply before the subroutine computes long enough to request its processing, i.e. the
second process receives the reply corresponding to the first process initialization.

This problem exlsts because messages (as defined in the STEPPS model) do not contain

tan implication of this method is that there is no guarantee that the calling process
receives the result of its call to the subroutine. However if, by conventlon, all calling
processes take no time before requesting their respective results, no problem ensues
because requests to and from the subroutine will occur in'the same order.

Lh R LR i L i L e U e

R —— B i i L i e RN LA R e - e VT T

JILA Use of the STEPPS model 111-4

\|/ \l/ SUBIN

Queve 2 }

(% | “

CALLER SUBR
Iy 01

: SUBOUT
l l/ Queve = |

CALLER.O, = Ix:l.0,0,0 ! wait for response, no concurrent computation

SUBR.I1 = 01:1.0,t | tis subroutine compute time
SUBR.OL = 11:1.0,00 ! Wait to be called again

Figure 111-2. Subroutine process

information and processes do not direct messages to other processes, only to
connected links. A solution is to introduce an intermediate process whose only
function is to call the subroutine and wait for a response. This is shown in Figure lll-
3. CONCALLER continues to process before eventually requesting a reply from port 1.
It is necessary that O, be onto I,, i.e, once a message is sent from port O, eventually
a message will be requested at 1,. The process INTER will actually perform the

subroutine call in the same manner as shown in Figure 111-2.

II1.A.3. Poisson processes and general service time processes

Typically, queueing theory models contain assumptions concerning the flow of

messages within a system of message processors. These assumptions concern

l

11LA Use of the STEPPS model 111-5

——1 =2 SUBIN
Queue 2 1
l T e 8 e T
I [+]] 11
' CONCALLER X b INTER SUBR
Iy 4—|<’—“‘ 12 01
SuUBOUT

o

CONCALLERO, = Lipt ! ps 1
INTER.I1 =# 01:1.0
i INTEROL = 12:1.0

INTER.I2 = 02:1.0
INTERO2 = 11:1.0

Figure 111-3. Concurrent processing subroutine call

processing rates and take the form of assigning processing time as a random variable.
The STEPPS system models a single processing time related t. a given state, but it is
possible to approximate a processing rate taken from some probability distribution.

The method used to approximate the production of messages with an

g Interarrival rate taken from a known probability distribution is as follows:
H 1. Let f be the probability density function of the given distribution. Choose
n to be the granularity of the approximation.
2. Divide the range of f into n distinct intervals Iy, .. ., Ine
3 p- S" f(t)dt This Is the probability of t being In the Interval.
4.ty = (§ HOA/p)
L—“_l—l—_-‘.u—h_

T e e

IILA Use of the STEPPS model

TS ARSIV O N S e T | e

This is the expected value of t in the interval.

5. Let the process POISSON send messages to link LINK and form the
connections LINK<POISSON.O1, .., LINKPOISSON.Op,. See Figure (I11-4).

6. The transition matrix for process A is defined by:

POISSON.O, = O;: P t; for x, im 1,

POISSON
o1 02 On

»L i J(LINK

Figure 111-4. Poisson arrival process

An example of this technique can be used to approximate a Poisson arrival rate

In the following manner. The density function for an expcnential rate between sending

messages with mean \ is (llh)e"/"

Choose a value, s, for tha probability of the start of the distribution. Thus
o0
o = { (1ne A at
t
which implies that the maximum value for tis tyay = -Nn(s). The interval [tmx,oo) Is
one interval and that the remaining interval, [Otppayh is divided into n-1 other
intervals. For convenience, the division will be into uniform Intervals of size w =
(tm,x)/(n-l).* Thus thz values for the probabilities for intervals Iy through Iy ore:
oy = S“"({ym-t/x dt = @-li=DPW/N _ gritw/\

isw
The values for the times for intervals Iy through 1,y are:

t = S(ii':?t‘fin"/* dt = (1-Dswsn) o~/ Giawan) e WA

When A = 260, ¢ = 0.001, and n = 10, the values for p; and t ure:”

*an example of 2 non-uniform interval will be shown in a later section of this chapter.

$The STEPPS system has a feature to automatically determine the probabliity values
and time given these parameters.

R RIS N

P SN e W

b ittt e

IILA Use of the STEPPS model -7

A.0, = 01: 535, 87.138; 02: .249, 286.696; 03: .115, 486.253; 04: .054, 685.81;
05: .025, 885.368

AO, = 06: .016, 1084.925; 07: .005, 1284.482; 08: .00'2, 1424.041; 09: .001,
1683.604; 010: .001, 2056.011

In a similar manner, any srrival rate at a link (e.g. to link ALPHA above) can be
approximated using the STEPPS model.

A general service time process can also be n’pproximated using the STEPPS
model (Figure III-5). The transition matrix for the general service time process,
GENERAL, is defined by:

GENERAL.I1 = O;: p;, t; and GENCRAL.O; = 11: 1.0, 0.0

|

I
GENERAL
o1 02 ,,, Op

R

Figure III-5. General service time process

1IL.A.4. Pipeline of processes

One convenient structure for asynchronous multiprocessing is a pipelins
consisting of a set of processes organized so that the results of one process form the
data for the next process. Multiprocessing occurs when there are data in each of
several processes in the pipeline. Figure IlI-6 shows the general structure of a
pipeline of processes. At one end is a source of data units (process A) and at the

other end is a sink for processed data units (process F). Connected in between the

P e W R B S
: sde o o ao o e e e e e e

!11.A Use of the STEPPS model 111-8

two are processes each of which has input ports all attached to one link and outpu!
ports all attached to another link. Since the results of one process are the data for
the next, each link between processes is connected to input ports of one process and
output ports of a second process. Historically, structures similar to a pipeline have
been successfully studied using queueing models [Kleinrock 75} A STEPPS model

obtains results pertaining to this struclure by means of simulation.

—>
A L C F

Figure 111-6. Pipeline of processes

I11.A.5. Synchronization

A multiprocessing program may contain process configurations that require
synchronization. One of the better-known synchronization primitive sets is Dijkstra’s P
and V operations on a semaphore. It is possible to model this behavior with the

* STEPPS model. A process implements a P operation by sending a message to a
LOCKSEM link and then waiting for a responding message before continuing (i.e. walt
for a response from LOCKEDSEM link). Likewise a V operation corresponds to sending

a message to an UNLOCK link. The STEPPS mode! would be:

LOCKSEM«PROCESS.0100 1 Attach to the lock semaphore
PROCESS.1100+LOCKEDSEM
PROCES$S.0100= 1100:1.0 | After performing a lock,

! wait for a response before continuing.

PROCESS.1100= other ports
UNLOCKSEM«PROCESS.0101 ! Attach to unlock semaphore

The notational definition of the synchronization processes is ac follows:

R T TV Sy S NN ST Y

B o

' IILA Use of the STEPPS modei _ -9

LOCKPROCESS.11+<LOCKSEM

LOCKPROCESS.12+SEMAPHORE

LOCKEDSEM«LOCKPROCESS.O1

LOCKPROCESS.I1 = 212:1.0 ! Obtain message from semaphore
LOCKPROCESS.I12 = 01:1.0 ! Let process performing iock continue
LOCKPROCESS.O1 = 11:1.0 ! Wait for next Jock request
UNLOCKPROCESS.11+UNLOCKSEM

SEMAPHORE«UNLOCKPROCESS.O!

UNLOCKPROCESS.I1 =2 01:1.0 ! Add one {0 semaphore
UNLOCKPROCESS.O1 = 11:1.0 ! Wait v sr more uniocks

Attributas SEMAPHORE Queue:n, Voiume:1
! n is maximum vaiue for semaphore
! Initial voiume of 1 ailows first lock to get through.

This technique is aimost an exact analogy to Dijkstra’s semaphores in that the
number of messages residing in the SEMAPHORE iink determines the number of LOCK
operations that can be performed. The difference is that there is a limit, n, of possible
locks. The use of UNLOCKPROCESS and UNLOCKSEM iink is redundant. The process
could be attached to SEMAPHORE instead of UNLOCKSEM: |
SEMAPHORE«PROCESS.0101 ! Attach to uniock lﬁ .somaphoro.

The graphic structure of the iock/unlock processes is shown in Figure I11-7.

A second exampie of a synchronization probiem is the Reader/Writer problem.
The problem is to aliow muitipie reader processes to be able to pass through a lock,
but to exciude aii writers so iong as any reader is not compiete. Once a writer
process tries to perform a lock other rnders'and writers are not permitted untii after
the writer has performed an unlock. Naturaily, the writer process does not proceed
_until all readers have compieted their read uniocks. The soiution to this problem
requires three processes: READLOCK, WRITELOCK, and WRITEUNLOCK (Figure I1I-8). A
reader process wiil send a messege to the PEADLOCK process and wait for e reply
from the READLOCKED iink before continuing. Likewise, a writer process wiii snond a
message to the WRITELOCK process and wait for a reply from the WRITELOCKED link

before continuing. The iink RWLINK initially contains N messages. Each reader wili

liLA Use of the STEPPS model I11-10

<] <
< F——
PROCESS
0101
100 k<
0100
I i At |
| |
LOCKSEM 1 : LOCKEDSEM
|
d LOCKPROCESS :
/l] 1§ (4] '
1 I2]
| |
Unlock the Semaphm:e \I :
| I Q:n v:l :
| SEMAPHORE |
|

Figure I1I-7. Lock/Unlock synchronization

cause one message to be removed from RWLINK. Thus there can be a maximum of N
simultaneous rezders before any reader is blocked.' The WRITELOCK process requests
all N messages from RWLINK before it allows 2 writer process to continue. When there
are already reader processes that have requested messages from the RWLINK,
WRITELOCK will wait until all current readers have performed a read unlock by sending
a message to RWLINK (each such message will be requested by WRITELOCK). After
WRITELOCK has all of the messages that were at RWLINK it allows a writer process to
proceed. No reeders can proceed sina there will be no messages at RWLINK until o
write unlock is performed by causing WRITEUNLOCK to send N messages to RWLINK

tAs with the PV model, there is only a finite number of possible readers. This Is not a
problem because the STEPPS model does not include dynamic creation of processes.

b b skt icki

e o

T W T W T —— T TR . A e

IIL.A Use of the STEPPS model

s e L Lo d i L

-11

and service to processes awalting at a link s FIFO. Only one writer process can pass

the lock since each would cause N messages to be requested from RWLINK and there

can never be more than N messagea thara.

Fomus=oa= == F —/cw - = i
| |
) [}
Readlock " ;l >l 11 READLOCK 4)|r I 3 Readlocked
| l 12 [}
|) \
I
Readunlock ' RWLINK E
I N X
Writeuniock Hf OI[N) |—> v‘_ . '
: WRITEUNLOCK ' :
| :
| |
! | :
Writelock !]| Sl 11 5 Writelocked
: 1 WRITELOCK o i =
| l
e e R e - :
READLOCK.I2<RWLINK
WRITELOCK.12¢~RWLINK+«WRITEUNLOCK.O1
READLOCK.I1= s [2:1.0 { Request a message from RWLINK
READLOCK.[2= 01:1.0 { Allow a reader to proceed
READLOCK.02= 11:1.0 ! Walt for another read iock
WRITELOCK.I1= s 12:1.0 ! Reguest message from RWLINK
WRITELOCK.I2[N]= 01:1.0 { After requesting N messages
! from RWLINK, allow a reader to proceed
WRITELOCK.Ol = 11:1.0 { Wait for another write lock

WRITEUNLOCK.11= s 01:1.0
WRITEUNLOCK.O1{N}= 11:1.0

1 Send messages to RWLINK
{ After sending N messages to
1 RWLINK, wait for next writer unfock

Attribute RWLINK Queue:N, Volume:N

Figure 111-8. Reader /Writer Synchronization

T o T R TR ey SR

i

T

L e o JRa g o i i e T R SRRty ST UV W M S iy CUROR L Epnam— [y Py AR N rosage - ' ® ol e

1I1.B Using STEPPS during system design: A Bllss/11 compiler I-12

111.B. Using STEPPS during system design: A Bliss/11 compiler

Bliss/11 [Wulf 72a] Is a system implementation language designed for the DEC
PDP-11 computer. Its only compiler is an optimizing cross compiler Implemented on
the DEC PDP-10. The language has been used as the implementation language for the
Hydra operating system [Levin 75, Wulf 75b] for the C.mmp computer, as well as for
other PDP-11 systems programs.

There are several reasons why a Bliss/11 compiler Is an appropriate program
to Implement on a multiprocessor (C.mmp). First, since Bliss/11 is the system language
for Hydra and C.mmp, it should be available on the Hydra system to make C.mmp self-
sufficient. In addition, the mechanism for moving programs between the two computers
is a time consuming and, presently, awkward arrangement. A second reason is that the
Bliss/!1 compiler is very large and slow. The compiler requires a large amount of
PDP-10 memory to do even small compilations. A third reason is that the internal
structure of the Bliss/11 compiler [Wulf 75a] consists of separate phases that could.
possibly be dlvided into separate processesf. Thus a Bliss/11 compiler is a program
that can be considered for implementation on a multiprocessor.

The STEPPS system will be used to predict how a Bllss/11 Implementation
might perform as a multiprocess program. Possible structures for the compiler and

structural refinements will be discussed.

111.B.1. An overview of the structure of Bliss/11

The Bliss/11 compiler is divided into seven relatively independent phases
(Figure 11I-9). The L;’s in the figure refer to intermediate representations of date
passed between the phases.

YThis conjecture has been discussed with the authors of Bliss/11 [Wult 75a]).

l11.B Using STEPPS during system design: A Bliss/11 compiler Il-13
TLA
DELAY
™
0PND [csx EVO LIFE
LEXSYNFLO PREF A
S RANK
Ly L ROX L] L
——| LEx | sYN | FLO - ! —— | RANK |
OPTR SEL G USEX
i N
i GPOL
LABEL
ASSIGNMENT
l'l
! FINAL
{
or |opTR
' coms| s LsT
1
ST | M| ume
REV | P
PACK CODE L
L L INACC| | BR L
PACK | —* ol cODE |t | cooe| F -
!
Mmp | ¢ REL
MP | A COOE
T
crs | 1
e | o
N

o s e it e

Figure 1li-9. Bliss/11 phase structure

e T—————n

e e U

11L.B Using STEPPS during system design: A Bliss/11 compller .

The following is a description of the compiler [Wult 75.]‘:

. . . the subroutine is the program unit to which each
physical phase is applied. Thus the source text for &n entire
subroutine is read and the phase LEXSYNFLO epplied 1o it,
producing Intermediate form Ly. In turn DELAY, TLA, .., and
FINAL are applied to the intermediate representations L Loy e
Le for the same subroutine, producing, respectively, Lo, Ly, ..,
Ly. The next subroutine is processed only after all phases have
been applied to its predecessor. A consequence of choosing the
subroutine as the unit to which successive phases are applied Is
that optimizations are applied to this unit; i.e., no optimizations
are applied which involve detailed structural knowledge of more
than one subroutine simultaneously.

The general attributes of the major phases are

summarized below . ..

LEXSYNFLO This phase performs lexical enalysis, declaration
processing, syntax analysls, and flow analysis.
The Input is the source program unit in character
string form. The output consists of: (1) a set of
symbol table entries, (2) a tree representation of
the parsed program unit, and (3) a set of lists
(generally threads running through the tree)
which define feasible global optimizations
(constant expressions which may be moved out of
loops and the like).

DELAY Delay has three primary functions: (1) to
determine the "general shape" of the object code
to be generated, (2) to estimate the “cost” of each
(linear) program segment, and (3) to determine the
evaluation order for expressions. By the "general
shape” of the object code, we mean those
properties of the operators (e.g., commutativity)
or properties of the target machine (e.g., indexing)
which may be used to simplify the computation of
a value. Decisions are also made at this point as
to whether any (or all) of the "feasible” global
optimizations arm, in fact, desirable. Actual
machine code Is not generated; rather various
flags and fields are set to guide local code
generation in a later phase. The cost metric is
used to guide selection of evaluation order and in
register allocation. The output of thls phase Is
identical to that of LEXSYNFLO (i.e., symbol table,
tree, etc.) except that certain information has

*Reproduced with permission.

ni-14

I1L.B Using STEPPS during system design: A Bliss/11 compiler

been added to the tree to signal the subsequent
phases of the compiler concerning the shape, cost,
and execution order of the code to be generated.

TLA, RANK, PACK

CODE

FINAL

The function of these phases is what in ot.er
compilers is frequently called “register allocation”;
the difference being that not only registers are
allocated, but memory locaticns as well. The
ontities which are assigned to i :ions (registers
or memory) include both ctupiler-generated
temporaries and user-defined "local” variables.
The output of this phase includes that of DELAY
plus the bindings.

The functicn of the CODE phase is to produce
locally optimal code for each tree node; hence its
output is a representation of the izrget machine
language (the tree is discarded at tl.is point). In
some cases the locally optimal code is completely
determined in DELAY; in these cases the action of
CODE is trivial. In many cases, however, further
analysis is required. For example, it is CODE’s
responsibility to determine the optimal sequence
of shift and mask instructions to move an
arbitrary subfield of one word into an arbitrary
position of another.

FINAL has two responsibilities. The simpler of
these is to prepare the final listing and object
code files. The more interesting responsibility is
a collection of relatively ad hoc “peephole”
optimizations. Thess optimizations are performed
by examining the actual code produced by CODE
and eliminating inefficiencies which CODE was
unable to detect. For example, FINAL will replace
a jump instruction which transfers to another
jump by one which transfers directly to the
ultimate destination. It will also remove
unreachable code, reverse the sense of certaln
tests, combine some instructions, etc.

111-15

As can be seen from the above, the phases operate indeperdently of each

other with respect to each subroutine. Thus while one phase is working with one

subroutine another phase can be compiling a different subroutine. The compiler looks

very much like a pipeline.

PG L R L VR SRR S RN SRS ULINS - TL . L
dheis i bl S

. 11L.B Using STEPPS during system design: A Bliss/11 compiler 1-16
111.B.2. Application of the STEPPS system to Bliss/11

A multiprocess model of the Bliss/11 compiier was examined using the STEPPS
system. A protocol of the use of the system for this application is presented in
Appendix B. The issues that were explored concerning the multiprocess decomposition
are:

1. How do specific alternate multiprocess decompositions of the compiler

affect throughput? Throughput was measured in terms of the number of
routires’ processed per unit time.

2. Does the performance of the model suggest other decompositions?

3. When the number of processors is restricted, what are the effects of
different scheduling algorithms?

4. What are the relationships among the number of processors available, the
average number of active processes, and throughput?

The mode!l of a multiprocess Bliss/11 compiler follows the ssme general
pipeline structure as the phases of the original compiler [Wulf 75a) Esch phase is
modeled as a server with an exponentially distributed processing rate.

Measurements of the operation of the real Bliss/11 compiler were taken; nine
programs of differing complexity were comgiled by an instrumented version of the
actual compiler. The total time spent in each phase was determined and the
corresponding percentage of total processing time was computed. These data are
shown in Figure 1lI-10. The phases are grouped slightly differently than those
discussed earlier, due to actual Bliss/11 structural properties; LEX is separated from
SYNFLO, and TNBIND combines TLA, RANK and PACK.

The processing rates of the STEPPS-modeled processes were chosen based on
the percentage of total processing from the Bliss/11 measurements. For example, the
processing rates for CCOE and SYNFLO were chosen to be .084 units and .216 units

*The unit of compilation in the Bliss/11 compiler.

I1L.B Using STEPPS during system design: A Bliss/11 compiler

Phase Time Percent of

(seconds) Total
LEX 67.92943 26.0 7
SYNFLO 56.38539 216 7
DELAY 9.64012 371%
TNBIND 2.78647 10.7 7
CODE 22.08524 8.4 17
FINAL 77.17126 29.6 7
Total 261.07621 1000 7

Figure I1I-10. Bliss/1! measured data

-17

respectively. The LEX process was considered to be the generating process which

provided elements to be processed at an exponential rate with mean .260 units.

Figure IlI-11 shows the set of commands to the STEPPS system used to create the

model (Appendix A contains a complete description of the STEPPS commands).

Model BL11

Density expon port lex.00 link Is mean .26

Density expon port synflo.o0 link sd mean .216
Density expon port delay.o0 link dt mean .037
Density expon port tnbind.o0 link te mean .122
Density expon port code.¢0 link cf mean .084
Density expon port final.o0 link fr mean .296
synflo.]20«|s

delay.]20+sd

tnbind.120+dt

code.l20«tc

final.120cf

synflo.o0 = 10:0; 120:1/10:1

copy delay.120, tnbind.120, code.120, final.120.synflo.120
copy delay.00, tnbind.00, code.o0, final.00:synflo.00
result.iO«fr

schedule noncompete result

attribute tc,cf,dt,fr,ls,sd Queue:100

Figure I1I-11. STEPPS Bliss/11 model commands

A graph representation of this model is shown in Figure 11I-12.

The first set of experiments consisted of simulating the model with one to six

111.B Using STEPPS during system design: A Bliss/11 compiler 111-18

r LEX J%—;[SYNFLO }.;{.;rocuwj_)l_){ memﬂ.)l-ar CODE ﬁH FlNAﬂ-)l—)‘—RESULLl
LS S0 o1 c CF FR

Figure 11I-12. Bliss/11 graph model

processors using one process per phase. For each number of processors, the effects
of three scheduling algorithms were also measured. These algorithms were: First-In-
First-Out (FIFO), Random, and Link (select the process with the ;argest number of
waiting messages). These algorithms are discussed in Chapter V.

The results of these experiments are shown in Figures 111-13, 111-14, 111-15, 1lI-
16, and 1lI-17. The measurements were performed on 700-900 messages
(representing routines) passing from the LEX p:ocess through the FINAL process. The
maximum possible throughput rate per experiment (i.e., simulation execution) is the rate
at which routines are produced by the LEX process. Thus the maximum expected
throughput rate is the reciprocal of the processing rate of LEX for each simulation,
4.00 routines per unit time when the expected time between routines is .250 (1
processor, FIFO). The observed throughput rate was found by dividing the number of
routines entering RESULT by the total processing time.

Prcrs. LEX Rate Thru Rate 7% Thru Rate Avg. Active Avg. Waiting

1 .254 0.96 240 1.00 4.98
2 272 1.78 484 2.00 3.28
3 279 2.74 76.4 296 1.61
4 252 3.40 85.6 3.38 0.44
5 272 3.37 91.7 3.66 0.04
6 .259 3.28 88.3 357 0.00

Figure 111-13. Bliss/11 Simulation FIFO Table

The measure that was used as the basis for comparing performance was the

R, e W

M"H

I11.B Using STEPPS during system design: A Bliss/11 compiier 1-19

Prcrs. LEX Rate Thru Rate 7 Thru Rate Avg. Active Avg.Waiting

1 .248 0.99 24.6 1.00 4.98
2 241 1.84 443 2.00 3.39
3 271 2.65 71.8 2.65 1.85
4 259 3.45 89.4 354 0.49
5 255 3.58 91.3 357 0.00
6 .270 3.26 89.7 3.47 0.00

Figure 111-14. Biiss/11 Simuiation LINK Tabie

Prcrs. LEX Rate Thru Rate % Thru Rate Avg. Active Avg.Waiting

| 242 0.91 220 1.00 4.64
2 241 1.96 47.2 2.00 3.37
3 273 2.78 75.9 2.94 1.53
4 .263 3.36 88.4 3.50 0.48
5 257 3.56 915 3.62 0.06
6 259 3.50 90.6 3.64 0.00

Figure 111-15. Biiss/11 Simuiation RANDOM Table

percent of maximum throughput rate. This measure was chosen because the measured
throughput rates varied due to the approximation to exponentiai processing rates. For
example, four processors using FIFO scheduiing showed a throughput rate of 3.40 out
of max rate of 1/.252 = 3.97 for 85.6 percent.

Several implications concerning this multiprocess model were apparent from
these results. First, the addition of more processors has a major, approximateiy linear,
effect on throughput until four processors are used. Addition of a fifth processor does
not cause a very large improvement (sbout 867% to 917). Adding & sixth processor
does not indicate any significant difference. Another factor is that the different
scheduling aigorithms do not seem to significantiy affect the modal’s performance. The
average number of active processes (and processors) lﬁd average number of ready

processes measures also indicate that after four processors are available most of the

[11.B Using STEPPS during system design: A Bliss/11 compiler 111-20

90
% MAX
THRU
RATE 80

70

60

50

Lo

30

20

Figure lI-16.

1 2 3 4 5 6
BLISS/11 PROCESSORS SCHEDULED

Bliss/11 Percentage Maximum Throughput

, 1IL.B Using STEPPS during system design: A Bliss/11 compiler

THRU
RATE

3.8
3.6
3.4
3.2
3.0
2.8
2,6
2.4
2,2
2.0
1.8
1.6
1.4
112
1.0
0.8
0.6
0.4
0.2

1 2 3 4 5 6
BLISS/11 PROCESSORS SCHEDULED

Figure lil-17. Graph of Measured Throughput

in-21

111.B Using STEPPS during system design: A Bliss/11 compiler 111-22

required processing power is available. This helps confirm the observation that the
addition of more processors beyond four doss not lead to as major a performance
improvement as adding one processor to fewer than four processors.

The next set of experiments included multiple copies of some of the slower
processss as part of the mode! as an alternative to the simple pipeline structure. The
only process that could not be duplicated was the LEX process since part of its
function Is recognizing the sequences of characters as delimiting a routine definition.*
An examination of the data indicated that there were three major bottlenecks. The
bottlenecks were identified by locating links between 1vocesses where the expected
queue length was large. Figures 11I-18, 11I-19, and 111-20 show the expected queus
lengths at the links between the processes. Naturally, these weru the same processes
that had relatively slow processing rates¥. Three alternate structures were examined:

A. 2 FINALs and 2 SYNFLOs;

B. 3 FINALs and 2 SYNFLOs;

C. 3 FINALs, 2 SYNFLOs and 2 TNBINDs.

Precrs. LS SO DT TC CF

9.194 0000 0000 0000 ©.000
8.403 5.148 7.172 8107 9.354
2.108 0010 0263 1505 6.40!
5.682 6.648 8817 9048 9.643
2765 1,770 2556 3303 6.674
3596 2.100 3.432 5350 8732

DD WN ~—

Figure 111-18. Bliss/11 Simulation FIFO Queue Lengths

These structures were run with 1, 5, 8 and all possible processors. Although

*This can be done by Begin-End counts.

*The large queue that formed before the Code phase was due to Code being unable to
send results to Final and thus had to wait before processing new rautines.

111.B Using STEPPS during system design: A Bliss/11 compi'er 111-23

Prcrs. LS SD o7 TC CF

0.410 0615 0.000 0.219 0.001
7.923 0.087 0987 5364 9.1l
4.139 0078 0.713 4533 8892
3459 1.136 4.623 6972 9.248
4266 3.268 5.757 7.018 8945
5903 6.204 8.404 8999 9.836

OO WN —

Figure I1I-19. Bliss/11 Simulation LINK Quaue Lengths

Prcrs. LS sD ot TC CF

8.461 4329 1796 0623 0.717
7.928 0404 0864 1362 7.925
4561 0.047 0975 65494 §&! 3
3355 2727 5326 7.749 9.593
3.419 1488 3306 5738 9.176
2976 3.762 7.766 8661 9.472

OO WN —

Figure 111-20. Bliss/11 Simulation RANDOM Queue Lengths

the simulations were run using all three scheduling algorithms, there was not much
difference in performance due to the scheduling algorithm (less than one per cent).
Thus Figures 11I-21, 11I-22 and IlI-23 show the results using either FIFO or LINK
scheduling. Figures 111-22 and 111-23 also show graphs of the FIFO results without
using multiple copies of phases. As the graphs show, each of the multiple process per
phase models performs better than the single process per phase model, given enough
processors. Structure C, above, performed the best among them.

The difference among the structures was not very large, viz. sbout 57 of the
maximum rate. Although there is improvement using the multi-copy structures, the
improvement over the single process per phase does nut appear to warrant such
structure. Instead, the bottleneck appears to be the LEX process which is inherently

sequential. This observation suggested another experiment to determine the effects of

111.B Using STEPPS during system design: A Bliss/11 compiler I1l-24

Decom- Prcrs. LEX Avg. Avg. Thru 7 Max

position Rate Active Ready Rate Thru Rate
Bl1 (A) 1 253 1.00 478 098 24.8
3 .251 2.88 223 2.87 720
5 272 3.68 2.28 359 96.8
8 267 3.79 0.00 3.70 98.8
Bl1 (B) 1 276 1.00 479 098 27.0
3 276 2.82 204 277 76.4
5 261 3.71 0.38 3.65 95.3
6 255 3.99 0.00 3.89 99.2
8 253 3.94 0.00 3.93 99.4
9 278 3.64 0,00 358 995
B11 (C) 1 .288 1.00 543 0.92 265
3 .263 2.81 225 276 726
5 274 3.55 0.41 3.46 94.8
8 .259 3.86 0.01 385 99.7
11 244 4.03 0.00 4.07 98.3

Figure 111-21. Table of Results of Multi-copy Bliss/11 Phase Models

further decomposing LEX into a pipeline of phases: FILE, ATOM, and NT|SEARCH. The
goal was to increase the rate at which messages reached the SYNFLO phase. The
* results of this set of experiments are shown in the table of Figure 111-24. It can be
seen that the rate at which messages queued up to the SYNFLO phase decreased from
26 10 .18 for an increase of 447 due to the further decomposition of the LEX phase.

Other process structures may also be studied using the STEPPS system.
Current research into the phases of Bliss/11 indicates that two of the phases could be
restructured. The DELAY phase [Johnsson 76] could perform more complex operastions
(and would be slower). The FINAL phase* could also be altered or decomposed even
further into smaller independent processes.

Since the d;ta presented represent about fifty separate model simulations, the
Bliss/11 experiments ware executed over several weeks, Each simulation required

*S. Hobbs, currant research.

111.B Using STEPPS during system design: A Bliss/11 compiler 111-25

b,2
4,0
Bl &
3.6
3.0
3.2
3.0
2.8
246
2.4
2.2
2.0
1.8
1.6
1.4
1,2
130

THRU
RATE

1 3 5 6 8 9 11
PROCESSCRS 8CHEDULED

Figure 111-22. Multi-copy Bliss/11 Phase Model Thru Rate Graph

111.B Using STEPPS during system design: A Bliss/11 compiler

% COF
MAX THRU
RATE

Figure 11I-23. Multi-copy Bliss/11 Phase Model Percentage Max Thru Rate

Greph

100

90
85
80
75
70
65
60
55
50
b5
40
35
30
25

1 3 5 € 8 9 13
PROCESSORS SCHEDULED

I11-26

111.B Using STEPPS during system design: A Bliss/11 compiler 11-27

FILE NS Send Avg. Avg. Thru 7 Max 7 Max

Prcrs Rate Rate Active Ready Rate of FILE "LEX"
3 119 .29 2.96 2.97 238 27.13 69.02
5 120 .20 4.41 0.79 320 38.40 64.00
7 126 .18 4.92 0.02 352 4435 63.36
8 d21 .18 4.85 0.00 329 3938l 59,22

Figure 111-24. LEX Decomposition Results

from four to thirty minutes of execution time for a total of about six hours of
execution time. This amount of time was not particularly large since It is about the
_same amourit of time that was required to obtain the Bliss/11 data originally.

As detailed in Appendix C, these simulation experiments were statistically
validated. Based on trial runs, message traffic flows and simulation run times were
determined for eliminating initial condition bias in the subsequent experiments. Since
there were many different simulation experiments, one was chosen for developing
stutistical confidence intervals. Thus, for the experiment using six processors anc FIFO
scheduling, the 907 confidence intervals computed were: LEX Computing Time,
[.245,264); Percent Thru, (84.6,885]; and Thru Rate, [3.28,357]. Comparing these
intervals with the results shown in Figure 111-13, it can be seen that each of the values
falls withir these respective confidence intervals (i.e, 259, 88.3, 3.28).

These Sliss/11 experimental results should have several implications to system
designers of a multiprocess Bliss/11 compiler. Foremost is the conclusion that there
should be an increase in processing throughput of about four times over a sequentlal
compiler. This estimated increase is significant in that it demonstrates both potential
benefits and potential limitations in developing a (possibly) complex multiprocess
Bliss/11 compiler. Given that the designer chooses to develop the multiprocess

compiler, it can be observed that the compiler should not necessarily be designed to

1IL.C Using STEPPS during system construction and tuning: Hearsay Il 111-28

dedicate a processor to each prucess. The simulated result shows that there ls an
approximate linear increase in throughput when using @ small number ci processors,
but after about two thirds of the number of potential processors are used the
maximur throughput rate is almost achieved. The bottleneck was shown to be the
lexical analysis phase of the compilation process. Finally, it was shown that simple
scheduling disciplines (FIFO and most messages waiting) did not affect potential
throughput .-ate more than a random procass scheduling technique. Thus these simple
experiments using the STEPPS model and STEPPS system should provide information

that would affect the design of a multiprocess Bliss/11 compiler.

111.C. Using STEPPS during system construction and tuning: Hearsay Il

The Hearsay Il speech understanding system (HSID) [Fennell 75a, 75b, Lesser
74] has been designed to utilize a variety of analysis sources to solve the problem of
understanding human speech for performance of a iask [Newell 71) The problem has
been functionally decomposed so that individual subparts of the problem solution can
be performed concurrently, with each contributing to the speech understanding task.

The Hearsay Il system is being implemented on both a uniprocessor, a DEC
PDP-10, and in a similar form on a multiprocessor, the CMU C.mmp. The uniprocessor
implementation is structured as if it were being implemented on a multiprocessor, with
a scheduler deciding on the actual order of processing. The C.mmp implementation
. contains some design alternatives chosen to reflect restrictions due to the Hydra
operating system [Levin 75, Wulf 74]. Some implementation Issues are common for

both machines since the systems are based on the same design.

R e el M e o i L e D

—— o il

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-29
111.C.1. Overview of Hearsay 11 system organization

The following is a description of the organization of the HSII system [Fennell

. and Lesser 75]?

.. The Hearsay 1l speech-understanding system
(HSII) (Lesser, et al. 1974; Fennell, 1975; and Erman and
Lesser, 1975) currently under development 8t Carnegie-
Me'lon University represents a problem-solving organization
that can effectively exploit a multiprocessor system. HSII has
been designed as an Al system organization suitable for
expressing knowledge-based problem-solving strategies in
which appropriately organized subject-matter knowledge may
be represented as knowledge sources capable of contributing
their knowledge in a parallel data-directed fashlon. A
knowledge source may be described as an sgent that
embodies the knowledge of a particular aspect of a problem
domain and is useful in solving a problem from that domain by
performing actions based upon its knowledge so as to further
the progress of the overall solution. It is felt that the
knowledge source is an appropriate unit for use in the
decomposition of a knowledge-intensive task domain.
Knowledge sources, being suitably organized capsules of
subject-matter knowledge, may be irdependently formulated
as various pieces of the knowledge relevant to a task domaln
become crystallized. The HSII system organization allows
these various Independent and diverse sources of knowledge
to be specified and their interactions coordinated so they
might cooperate with one another (perhaps asynchronously
and in parallel) to effect a problem solution. As an example
of the decomposition of a tesk domain there might be distinct
knowledge sources to deal with acoustic, phonetic, lexical,
syntactic, and semantic information.

% % %

.. . A productioa system is a scheme for specifying an
information processing csystem in which the control structure
of the system is defined by operations on a set of
productions of the form *P* 4 A, which operate from and on a
collection of data structures. 7' represents a loglcal
antecedent, called a precondition, which may or may not be
satisfied by the information encoded within the dynamicaily
current sst of data structures. 1f *P*is found to be satisfied
by some cata structure, then the associated action ‘A’ may be
executed, which presumably will have some altering effect
upon the data base such that some other (or the same)

- - - 5 0 O

*Used with permission.

R R T A

1ILC Using STEPPS during system construction and tuning: Hearsay II

precondition becomes satisfied. This paradigm for sequencing
of the actions can be thought of as a data-directed control
structure, since the satisfaction of the precondition is
dependent upon the dynamic state of the data structure.
Productions are executed as long as their antecedent
preconditions are satisfied, and the process halts either when
no precondition is found to be satisfied or when an action
executes a stop operation (thereby signalling problem
solution or failure, in the cace of problem-solving systems).

* % %

. The HSII system organization, which can be
characterized as a "parallel” production system, has =
centralized data base which represents the dynamic probiem
solution state. This data base, which is known as the
blackboard, is a multidimensional data structure which is
readable and writable by any precondition or knowledge-
source process (where a knowledge-source process is the
embodiment of a production action). Preconditions are
procedurally oriented and may specify arbitrarily complex
tests to be performed on the data structure in order to
decide precondition satisfaction. Preconditions are
themselves data-directed in that they are tested for
satisfaction whenever relevant changes occur in the data
base, and simultaneous precondition satisfaction is permitted.
Testing for precondition satisfaction is not presumed to be an
instantaneous or even an indivisible operation, and several
such precondition tests may proceed concurrently.

£ % s

. . . The basic structure and components of the HSII
organization may be depicted as shown in the message
transaction diagram of Figure 11I-2%. The diagram indicates
the paths of active information fiow between the various
components of the problem-solving system as solid arrows;
paths indicating control activity are shown as broken arrows.
The major components of the diagram include a passive global
data structure (the blackboard) which contains the current
state of the problem solution. Access to the blackboard is
conceptually centralized in the blackboard handler module,T
whose primary function is to accept and honor requests from

The blackboard handler module could be implemented either as a
procedure which is called as a subroutine from precondition and
knowlecze source processes, or as a process which contains a queue 0}
requests for blackboard access and modification sent by precondition and
knowledge source processes. In the implementation discussed in the
paper (i.e, Fennell and Lesser 75), the blackboard handler module is
implemented as a subroutine.

D e w1 -y

111-30

I11.C Using STEPPS during system construction and tuning: Hearsay Il 1-31

the active processing elements to read and write parts of the
blackboard. The active processing elements which pose these
data access requests consist of knowledge-source processes
and their associated preconditions. Preconditions are
activated by a blackbcard monitoring mechanism which
monitors the various write-actions of the blackboard handler;
whenever an event occurs which is of interest to 2 particular
precondition process, that precondition is aclivated. If upon
further examination of the blackboard, the precondition finds
itself "satistied,” the precondition may tren request a process
instantiation of its associated knowledge source to be
established, passing the details of how the precondition was
satisfied as parameters to this instantiation of the knowledge
source. Once instantiated, the knowledge-source process cen
respond to the blackboard data condition which was detected
by its precondition, possibly requesting further modifications
to be made to the blackboard, perhaps thereby triggering
further preconditions to respond to the latest modifications.
This partizular characterizatio., of the HSII organization, while
certainly overly simplified, shows the data-driven nature of
the knowledge source activations and interactions.

111.C.2. STEPPS model of Haarsay Il organization

The STEPPS mndel was used to represent the operation of the individual
processing components of the HSIl system, the precondition (PC) processes and the
knowledge source (KS) processes. In addition the data base (DB) blackboard was
modeled as a set of synchrr.nization locks similar to those presented in Section IILA.5.
In some cases locks cascaded, i.e * lock operation caused performance of {wo or
more other locks. The details of the STEFPS HSII models are shown in Appendix B.

Figure 111-26 shows a detailed description of the PC process actions and Figure
I11-27 shows the corresponding STEPPS graphic and system transition matrix notations.
The essantial common actions of a PC are modeled: wait for condition, examine DB,
compute, possibly initiate a KS, and repeat.

Similarly, Figure I1I-28 shows a detailed description of the KS process actions

and Figure III-29 shows the corresponding STEPPS graphic snd transition matrix

s

11i-32

111.C Using STEPPS during system construction and tuning: Hearsay Il

siajewesed pue

ssadjo.d
Sy @B

oweu SH

-

paisnes

e

« Bjep/fisanbal ¥

ejep/isanbas p -

« ejepfisanbai y

>

wsiueydraw

<y

Bulsojiuow

J@jpuey

gjep/isenbai p =

FRLELPIES
apou
‘88

Figure 111-25. Simplitied HSII System Organ ration

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-33

Precondition

I1: Wait for condition occurrence
With probability p, wait for more condition occurrences (go to I1)
02: Perform DB read lock
[2: Wait for lock completion
03: Perform read
2: Wait for read completion
Compute
With probability p, perform more reads (go to 03)
04: Perform DB unlock(s)
05: Start up a S (or set of KS's or no KS's)
' terminate processing (go to I1)

Figure 111-26. Description of Precondition Process

1 1 ! 1 ! 1 1
I 02 12 03 I3 04 05

Precondition

PC.Il=s 11:pt, ;02:1-puty.. ! Either wait for more messages
c"Pe e l-pe
1 or DB read lock

PC.02= 12:10 | Wait for lock complete
PC.l2= 03:1.0 ! Perform read
PC.O3= 13:10 ! Wait for read complete

PC.I3= 03:p,t ;04:1-pr,tl_p ! Either read more or unlock

PCO4= 05:1.00" r 1 Start up KS(s); the time is processing time
! before restart

PC.OS= 11:1.0 ! Wait for restart

Figure 111-27. STEPPS Precondition Model

notations. The essential common KS process actions are modeled: wait to start,
examine data base, process, and possibly aiter the data base.

It can be seen from these descriptions that there are relationships between
the Precondition processes and the Knowledge Source processes. These sare
relationships whereby PC's send messages to KS’s. In STEPPS, this is represented by:

KS.11<KSLINK+PC.05 1 Connect PC to KS through KSLINK

111.C Using STEPPS during system construction and tuning: Hearsay I 11-34

Knowledge Source

11 Wait for wake up
02: Perform DB read lock(s)
12: Wait for lock completion(s)
03: Perform read
13: Wait for read completion
Compute
With probability p, perform more reads (go ‘o 03)
04: Perform DB read unlock(s)
Compute
With probability py terminate processing (go to I1)
05: Perform DB write lock(s)
I5: Wait for lock cempiaiion
06: Perform write
16: Wait for write completion
Compute
With probability p,,, perform more writes (go to 06)
07: Perform DB write Unlocki(s)
Terminate processing (gu to 11)

Figure 111-28. Knowledge Source Process Description

The model has been designed so that there is some decision process which
chooses which PC will next receive notice to start processing. This decision process,
called PCSELECTOR, is attached to the port Il of each precondition. Figure 111-30
shows the graphical relation between PCSELECTOR and the set of preconditions. A
possible transition matrix for PCSELECTOR when there are n preconditions is:

PCSELECTOR.O,=01:py; O2:pgi . . . Onpp for x=i,.. 40

The PC processes and KS processes interact with each other by reading and
writing the data base. The data base accessing is an example of the Reader /Writer
problem that was discussed in an earlier section.

The Hearsay 1l system has been designed to allow the dynamic creation of KS
processes. These processes perform their respective operations and then disappear.

Since the STEPPS model was not designed to aliow for this facility, it must be

e g N g | e, e A e e g vy R TRRSRRTTE

B e o i D o Ll

[I1.C Using STEPPS during system construction and tuning: Hearsay [l [11-35
l 1 1 ! 1 T 1 1
11 02 12 03 13 03 0 B 06 16 07

Knowledge Source

! Transition matrix

KS.l1=2

KS.02=
KS.I12=
KS.03=
KS.13=

KS.04=
KS.05=
KS.I5=
KS.06=
KS.16=

KS.07=

02:1,'1

12:1.0
03:1.0
13:1.0

Next step

'ty represents computation time before
! doing read lock

! Wait for read lock completion

! Perform read

! Wait for read lock

03:p,, ty, 5 04:1-ppty. ! Either do more reads or perform unlock
r Py rrl-py

ll:p'.lp'; 05:1-pp(| -py

15:1.0
06:1.0
16:1.0

! The. times can be different

! Either terminate or perform write uniock
! Wait for write lock

! Perform write

! Wait for write complation

06:pw,tpw; 07:l-pw,tl_pw! Either write more or unlock

I1:1

! Wait to restart

Figure [11-29. STEPPS Knowledge Source Model

PCSELECTOR
01 02 e On
XY Y.
M 2] Pen
-> =
Vi
—> —> T~ KS d
. KS [‘ ! | E s

Figure 111-30. PCSELECTOR process

111.C Using STEPPS during system construction and tuning: Hearsay Il [11-36

approximated. The method is to allow a fixed number of instantiations of a single KS
to act as a pool of KS's. These KS’s compute in-parallel since different copies of the
KS can accept messages from their entry link (Figure 111-31). The model performs as if
" there were some maximum number of KS's of each type allowed. When a suitsble

number of copies of a KS are available the limit will not atfect pertormance.

KS, ks. | .. . |Ks

Figure 11I-31. Set of identical Knowledge Sources

111.C.3. Performance questions pertaining to the HSII model

The model of HSIl emphasizes implicit interprocess communication via data
directed processing. This communication is the basis for interprocess interference
which occurs either when processes are blocked when attempting to perform a data
lock or when a process waits for the occurrences of actions of another process
(modeled as waiting for a message).

The following are pertinent questions for structuring of the Hearsay Il system:

1. How much of the data base is locked and when?

2. What is the expected interference due to the locking?

3. How do various locking strategies compare?

4. Should a PC start up a set of KS instantiations sequentially, in parallel or
in groups?

5. How many processors are needed?

6. What are the effects of alterrate scheduling algorithms?

111.C Using STEPPS during system construction and tuning: Hearsay I 111-37
7. How caa the processing load be balanced among available processors and
with respect to the data base?

8. Is there a particular number of processes that should be dedicated to KS’s
and anothsr number that should be dedicated to PC’s?

The ultimate goal is to be able to solve the speech prob'sm In the least amount
of real time. The questions relate to the goal in that they provide an understanding of
those places where Hearsay Il is performing well and poorly with respect to

interprocess activity.

111.C.4. Application of the STEPPS systemn to Hearsay Il

The STEPPS system was used to analyze a Hearsay Il phenomenon discovered
by Fennell [Fennell 75a, 75b} He appended a multiprocess simulator to a version of
the developing HSIl system and measured the processing performance under several
multiprocessor configurations. One of the parameters of interest to him was the effect
of locking on the the throughput of the multiprocessing system. Throughput is
important to the speed with which the HSIl system would perform the speech
* understanding task. Measures of throughput that he used were:

1. The average number of active processors, and

2. The average number of inactive processors.

One of Fennell’s results was that when locking was used, to insure data
integrity and to prevent deadlocks, he obtained a measure of throughput averaging
4.16 processors with 16 processors available. Howaver when the locking structure of
the simulation was turned off.‘r the average number of active processors was found to
be 11.84. Fennell did not explain this phenomenon, but noted that the locking
interference had a significant effect on effective parallelism [Fennell 75a, 75b}

- o o s v -

*The removal of the locking, as reported by V. Lesser of the HSII researchers, does
not affect data integrity since the locking used in Fennell’s simulations concerned
independent fields of nodes.

J11.C Using STEPPS during system construction and tuning: Hearsay 11 111-38

The STEPPS system was proposed as a tool to analyze this phenomenon. The
motivation was twofold. First, the locking/no locking problem indication of close to
threefold processing utilization deterioration was important enough to analyze.
Second, this problem appeared to be a practical application of some of the STEPPS
facilities.* A factor that added to the appropristeness of the STEPPS model was that it
is easy ‘o model a data driven organizational structure, like HSIl. One issue for
investigation was whether the probabilistic approach to modelling interprocess
communications was sufficiently powerful to reproduce the phenomenon found using
Fennell's simulation. It successful, the STEPPS model could be modified for
representing costly HSII system modificatiuns, and predictions could be made of their
effects on HSII performance.

A brief discussion of a pertinent part of the locking algorithm follows (See
[Fennell 75a] for complete details). The data bass consists of a set of nodes arranged
in a two-dimensional structure. Along one dimension are 9 categories called lexical
levols. The second dimension represents utterance time and is divided into 30 distinct
units. Thus a node exists in a lexical level at a given utterance time. Nodes can be
grouped into time ragions covering all nodes on a single lexicon level occurring
between time a ard time b (a s b). Locks can be performed on individual nodes or on
regions--locking all nodes within the regions.

In order to prevent deadlocks, locking is performed in a hierarchical manner
using specified convertions. The hierarchy is that locks occur in the order: by lexical
leve! and ‘hen by increasing time. Each process performs all of its locks, performs
some processing, and then releases ali of its locks. There can be no deadlocks since
all required data nodes must be available before any processing occurs and sll nodes

t1t was not originally recognized that some limitations of the STEPPS system would
also be Identitied. This will be discussed later.

i e, o T T T B T R g M e N —m—pm——— g SR . —

I11.C Using STEPPS during system construction and tuning: Hearcay Il 111-39

are released before any new locks are performud. In addition, when two processes
attempt to lock the same pair of nodes (possibly among other nodes as well), they can
not mutually block each other since they both must perform thelr locks in the same
order.

An additional attribute of the HSII locking convention is that a process
maintains a lock on a node until it releases all of its nodes. This means that if a
process locks node A but is blocked from locking node B, it waits for the release of
node B before continuing and maintains Its lock on node A while being blocked. This
method guarantees that each process will eventually complete its required processing,
but the method can cause a third process to be blocked unnecessarily If It only tries to

lock node A.

II1.C.5. The STEPPS simulation of the locking problem

An analysis of the Hearsay II knowledge sources and preconditions was
performed to determine the parts of the blackboard examined by each process type.
By executing the HSII prototype system in a sequential mode with data collection
features turned on, members of the HSIl development team' generated data that was
analyzed to detsrmine proper probabilities and computat'>n tines uscd in the STEPPS
model of HSIL

Due to the STIPFS svsi~.: overhead, ine complete set ¢f pos<ibia iucking
structures could ro: be mode'su. Thus the % TEPPS modal of HSII sop.uxime'ad the
locking structure. Foi (ne straulation ¢f HSII it was dotermnw < tha locking neeurred in
only 23 ways witn respsct to iexicon le._.s. Figurs ill-32 shaws the matrix
representing these lecks and which processes performed the locks. Each process

'Special appreciation is ackncwl.1 jgad to V. Lzsser, R. Fennell, and G. Gi'!.

111.C Using STEPPS during system construction and tuning: Hearsay I 111-40

could choose from among its possihle locks (as shown in the table) uniformly as the

current locking set for the process.

Lock Lexicon Lock Lexicon

No. Levels Locked No. Levels Locked
1. WORD + WRDSURN 13. PHON + PSEG
2. WORD + WRDSURN + SURN 14, PSEG + SEG
3. WORD + SURN + PHON + MXN 15, SHDSENT

4. WRDSURN + SURN + PHON 16. SHDWORD

5. WRDSURN + SURN 17. WORD

6. SURN + PHON + MXN + PSEG 18. WRDSURN

7. SURN + PHON + MXN 19. SURN

8. SURN + PHON 20. PHON

9. PHON + MXN + PSEG 21, MXN

10. PHON + MXN 22. PSEG

11. MXN + PSEG + SEG 23. SEG

12. MXN + PSEG

Process\Lock 1 2 3 4567 8 9 1011121314151617181920212223

PRE|RPOL XX X X X XX X X
KSjuv XX XX X XXXXX X

PRE|PSYN X
KS|PSYN XX XX X X
KS|CSEG X X XX X X
PRE|PSC X
KS|SEARCH X
KS|TIME X X X
PRE|UTTB

KS|UTTB X X
PRE|SEG X X
KSISEG X
PRE|ALO X X

KSJALO X X X X X

»

X X x x

M X X x
XX x x

>

b3

Figure 111-32. Hearsay Il Locking Structure Matrix

The thrust of the simulation experiment was to reproduce Fennell’s results
using a probabilistic model. Appendix B contsins definitions of the probabilities used
for the simulation. The first question of interest was how the simulation performed

with locking vs. without locking.

LI IrRSENEN——.

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-41

The Indlvidual time divislons for locks also contribute to locking Interference. A
second Interesting question was how the region sizes affected simulated interference.
The STEPPS system possd an overhead limitation on what could be modeled and so
hindered answering this question. Specifically, it was not possible to represent locking
In all of the 30 possible divislons (4680 possible regions). Instead each lexicon level
was considered as a single region and decomposed Into subregions in successive
experiments until the overhead of running the STEPPS system overwheimed the
computer.*

The parameters that could easily be altered for the system simulations were:

the existence of locking,

the number of subregions for each region,

the number of processors available, and

the probabilities that the processes performed their locks.

The region locks for each process were formed by examining the program
structures for each of the modeled processes. The probabilities used by a process to
choose locking structures were assigned uniformly over the possible locks. The times
between locks and the time for a lock to take place were taken from the HSII system
data.

Several models of the system were simulated and representative results are
shown in Figure IlI-33. The results demonstrate that with no process interference
there can be 12.26 processors active on the average. This corresponds to the results
found by Fennell's simulation of the entire HSII system. The second set of results
(with locking) shows that when the region locking interference is introduced there is a

dramatic decrease in parallel processing. As the regions were further decomposed,

parallel processing did not substanlially change.

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-42

Locking Strategy Avg. Active Subregions Total Locks
No locking interference 12.26 9 23
With locking 311 9 23
Subregions MXN(2), PSEG(2) 3.06 i1 53
Subregions MXN(2), PSEG(2), PHON(2) 3.27 11 75
Subregions MXN(2), PSEG(3), PHON(2) 3 11 13 85

Figure 111-33. Hearsay Il Representative Results

As diccussed in Appendix C, the statistical validation of these results, based on
the elimination of initial condition bias, was accomplished by performirg trial runs of
the Hearsay 11 model to deterime subsequent simulation experiment run times.
Confidence intervals were not determined for the statistics preserted sinve
accumulated statistics (i.e., average active processors) requires multiple simulations
[Gordon 69] which were felt to be too expensive. Moreover, the STEPPS Hearsay Il
simulation results were correspondences to Fennzll’s simulation experiments, which
were also not validated [Fennell 75a}

The STEPPS simulation results demonstrate that the probabilistic approach can
be used to model the Hearsay Il multiprocess communication structure. Both the
Fennell and the STEPPS simulations indicated about a threefold decrease in a measure
of processing throughput due to locking. In addition, the relatively simple STEPPS
model indicated that the granular locking structure used by Hearsay Il may not be

necessary.

111.C.6. Reflections on the STEPPS Hearsay 11 simulation

The STEPPS system's use as a tool for examining the Hearsay 11 process

structure was successful in that STEPPS adequaicly represented major interprocess

communication dependencies and produced results reflecting on the Hearsay 11 system

I11.C Using STEPPS during system construction and tuning: Hearsay Il 111-43

structure. The probabillstic approach applied within the STEPPS structure and the
approximations to the actual impiementation were sufficiently powerful to reproduce
Fenneli’s result and indicate an area for HSII system modification. Another significant
observation was that the dcta used to reproduce the Fennell result came from a
sequentlal operation of HSIl and yet yielded appropriate predictions concerning the
multiprocess HSII system. This observation implies that the HSII multiprocess structure
does not produce a large amount of interprocess assistance (or interference) over the
STEPPS multlprocess model that contalns no direct interprocess assistance.

Some further simulation experiments might have been useful for studying
Hearsay II. However, during the STEPPS simulations the Hearsay Il system process
structure was altered. These modifications inciuded the replacement of several
Precondition and Knowledge Source processes with new versions which resulted in an
increase in the total number of procisses. To incorporate the Hearsay modifications
would have required the coliection and analysis of data from Hearsay and the creation
_of a new STEPPS model. The cost in computer time and analysis effort was too large
during the period that the simulations were performed. Experiments that might have
been useful are:

Restrict the number of availabie processors instead of using the maximum
possible.

Modify the process structure to use many simple Precondition and
Knowledge Sources.

Increase the number of subregion locking beyond that used.
An additional limitation to performing these simulation experiments was the
STEPPS system itself, since prototype limits of the STEPPS system were reached when
the Hearsay Il simulation mode' exceeded available PDP-10 memory.

Even considering the previously discussed limitations, the STEPPS system

111-44

application to Hearsay Il was significant. First, the STEPPS model could easily
represent the non-trivial HSIl communications structure. Part of this ease was due to
the HSII data directed process organization of interest in the experiment being well
suited to the probabilistic nature of STEPPS processes. The spplication demonstrated
that the data coliected during a STEPPS simulation’ was sufficient to provide the
required results.® Finally, the STEPFS system could really aid the HSII systems
developers in tuning their system by providing a relatively simple framework to
examine the consequences of paramster changes (eg. probabliities and timing) in

addition to structural changes.

tSee Chapter V for details on simulation data collection and parameters.

$This can also be stated for the Bliss/11 application.

RNe———e

Iv-1

Chapter IV
Anslysis of a STEPPS Model

A STEFPS model of a program can be analyzed to predict some of the
program’s performance properties. Unless a modei is analyzed and certifled as sa‘~, a
program that is constructed, bzsed on the model, may be useiess. It Is sometimes
vaiuable to expioit the simiiarity of the STCPPS mode! to known models for appiication
of known analysis techniques; thus we begin with u review of these models and

techniques.

IV.A. Markov and semi-Markov processes

The model of a process described in Chapters 1 and Il Is essentialiy a
description of a semi-Markov process [Howard 71 vol. 1 & 2] A discrete-time Markov
process is a probabilistic system composed of a set of states, a designated current
state, and a probabiiistic ruie for changing between states. The basic ruie for a
Markov process is that the probabiiity of a transition between the current state and
any successor state is independent of any past history. Let {Ei)ni-l be the set of
successive events and let the finite set {X,-}"‘j_l be the possibie state values®. Then
the Markov assumption Is formally:

P(Ensp = Xy | Et = th,t =L..an) =PE,,q =X | Ep= xjn)'
The probabiiity that the next event, En+l' is a particuiar state, Xk Is only dependent
on the last event xjn' When finite state processes are studiad, the probabillties are

*In general the state vaiuves couid be an Infinite set, but this research Is only
concerned with finite state processes.

IV.A Markov and semi-Markov processes Iv-2

sometimes chosen to approximate known distributions to facllitate analysis. In all
cases, the sum of the probabilities of transferring from a particular state to the set of
next possibilities mus’ be 1.

A Markov process may be composed of chains of states. A chain is a set of
states such that once the process enters one of the states of the set the only other
states that the process can enter are in that set. In general, a process may have more
than one chain and whichever chain is entered first determines how the process will
eventually perform. The analysis and operation of a process with more than one chain
is dependent on the process’s initial state. A process with only one chain is called a

monodesmic process.
For a monodesmic Markov process It Is still possible that some states do not

recur. This happens If the process can ever reach a state such that the probability of

?

ever reaching some states is zero. States that can not recur in steady state’ are

called transient states. Informally, a transient state is a state of a process that can

only be entered between an initial state and a chain,

Example IV.A-]

Figure IV-1 (a) shows the transition matrix of a Markov process with
two chains. The states of the process are w, x, y, and z. If the process
is initially in either state w or x then the only states that it can ever
enter are w and x. However if the process is Initially in either state y
or z then it can only enter states y or 2. Thus the process has two
chains. No states are considered to be transient since all of the states
are in some chain.

Figure IV-1 (b) shows the transition matrix of a monodesmic process

having two transient states. The states of the process are a, b, ¢, and

d. The chain is composed of states ¢ and d since once they are entered

no state other than either of them may be entered. In addition states a

and b do not form a chain since the process may eventually enter the ¢

- d chain from a and b. If either a or b is an initial state they may

recur many times, but eventually the chaln will be entered and then it

will be impossible to enter either of them again.
1'Swady state is defined to be the operation of the process after some suitably large
number of transitions.

IV.A Markov and semi-Markov processes Iv-3

w x Yy z
w p 1-p 0 O
X q 1.9 0 O
y 0 0 r 1-r
z o 0o 1 O
(a) Two chains: (w,x) (y,2)
a b ¢ d
a 0 p lp O
b q 0 0 I-q
c o 0 0 1
d o 0 1

(b) Transient States: a and b

Figure IV-1. Markov Processes

Markov processes have been studied in order to solve problems such as:
What is the expected number of transitions before entering state S?

What is the probability of entering state S from state T: (1) in m
transitions? (2) in m or fewer transitions? (3) ever?

In steady state, what is the probabillty of entering state S on the next
transition?

The last question points out one example where steady state actlvity is considered
important. For monodesmic processes the initial state Is unimportant, but the activity
of processes with multiple chains is strongly dependent on the initiel state since as
showr. In Example IV.A-1 a process can behave quite differently In steady state
depending on how it was initialized. For this reason most models using Markov
processes are monodesmic.

This research is also concerned with the stead, state properties of e
multiprocessing program. Translent states create difficulties In analyzing data flow in

the steady state of @ multiprogramming model because It Is possible that a process will

IV.A Markov and semi-Markov processes Iv-4

never reenter a transient state. The STEPPS model is restricted to disallow processes
with multiple chains and transient statas because they do not contribute to the steady
state of a process. The STEFPS sysism is able to analyze a process and determine
whether these restrictions have been met. The algorithms for parforming this analysis
are discussed later in this chapter.

A semi-Markov process is a generalization of the Markov process model. In a
Markov model, one unit of time elapses between successiQe transitions in all cases. In
the semi-Markov mode!, the time taken between successive transitions depends on the
particular transition. In the model’s most general form, the time taken between any
two successive states can be a random variable; in the STEPPS model this serves no
useful purpose, so the time taken between any two particular transitions is a constant
depending only on the two states. In fact, the real time between transitions in a
STEPPS model is usually not completety predictable since a process may be forced to
wait as discussed in Chapters [and Il

Some problems that have been studied using the seml-Markov process models
ara:

What is the expected process time between entering state S and entering state

T?

What is the expected process time between recurrences of state S?

In steady state, what is the expected percent of time spent in state S?

Again, the last question is the most interesting one for the STEPPS model.
There is not always an accurate result for a STEPPS model because processes in the

f

STEPPS model are not semi-Markov due to the essentially uipredictable’ wait time.

However an estimate of the type of activity that e process will be performing when it

is executing is «till a usefu! resuit.

- - = - - - - - - -

YThe wait time is unpredictable for a given process when considering the process
independently of the entire model.

IV.A Markov and semi-Markov processes V-6

The theory teiis us that It is possibie to predict the steady state probabilities
of which state wili be entered next, not knowing the present state. This means that it
is possible to create a representative transition matrix such that each row is the same,
le. the choice functions are ail the same when the most recent state Is unknown.
These probabilities also refiect the probabiiity of being in each of the states after a
large number of transitions.

The steady state probabiiities can be determined analytically by soiving a set
of n+l linear equations in n unknowns. Let ST;, iml, ..., n be the steady state
probabiilties of the process and let Pi,j be the probabiiity of entering state j from
state | In one transition. The aquations to be soived are:

STi'Pl,i‘STl*-”*Pn,i‘STn fori=1,...,n
1 =STy +STp+...+5T,

The first n equations are redundant, so the soiution requires replacing one of
the first n equations with the iast equation. The system of equations will be solvable
since the matrix describes a monodesmic process with no transient states'[Howard 71
vol. 1} Otherwise the equations do not have a unique soiution.

The analysis that has just been described is one of the Markov theoretical
analytic techniques that can be applied to the processes of a STEPPS model. The fact
that the STEPPS model processes are similar to semi-Markov processes is only useful
if a system designer wants to anaiyze components of a STEPPS model In this way. In
most cases, Markov and semi-Markov snaiysis of STEPPS processes Is of limited
usefuiness since the STEPPS processes are oniy components of a iarger model and the
transition matrices do not entirely reflect the operation of a process.

In order to represent analyticaily an entire STEPPS model, aii possible states

- P P P 4P S s s P S = 4 9 - - -

trhis is guaranteed by the STEPPS system.

IV.B Well-formed STEPPS models Iv-6

(In the Markov process sense, rather than STEPPS) must be included in the analytic
description. Not only must every STEPPS state be included as analytic states, but also
analytic states must be introduced to represent lhe operations of the STEPPS links.
The effect is the creation of a matrix representing at least N squared states (where N
| is the sum of the number of STEPPS states in each STEPPS process). Not only is this
mode! compiex, it requires the introduction of probabilities (and associated times) for

some new, potential Markov state changes.

IV.B. Well-formed STEPPS models

As noted in Chapter I, in order for a STEPPS model to be useful it must meet
certain restrictions and be designated as a well-formed model. Earlier in this chapter
it has been pointed out that each process in a STEPPS model must be monodesmic and
have no transient states (termed well-formed process). An additional restriction
guarantees that a model represents a data flow which can be simulated and which can
reach steady state if simulated for a sufficient period of time. Hence other restrictions
to the